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Abstract. In this paper, we give some new criteria that guarantee the existence of at least one weak
solution and two weak solutions for a p-Hamiltonian boundary value problem generated by impulsive
effects. To ensure the existence of these solutions, we use variational methods and critical point theory
as our main tools.
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რეზიუმე. ნაშრომში მოცემულია ახალი კრიტერიუმები, რომლებიც უზრუნველყოფს მინიმუმ
ერთი სუსტი ამონახსნის და მინიმუმ ორი სუსტი ამონახსნის არსებობას იმპულსური ეფექტებით
წარმოქმნილი p-ჰამილტონური სასაზღვრო ამოცანისთვის. ამ ამონახსნების არსებობის უზრუნ-
ველსაყოფად მთავარ ინსტრუმენტად გამოყენებულია ვარიაციული მეთოდები და კრიტიკულ
წერტილთა თეორია.
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1 Introduction
In this research, we prove the existence of at least one weak solution and two weak solutions to the
following second-order impulsive p-Hamiltonian system

−
(
|u′|p−2u′

)′
+A(t)|u|p−2u = λ∇F (t, u) + µ∇G(t, u), a.e. t ∈ J,

△(|u′i(tj)|p−2u′i(tj)) = Iij(ui(tj)), i = 1, 2, . . . , N, j = 1, 2, . . . ,m,

u(0)− u(T ) = u′(0)− u′(T ) = 0.

(1.1)

Here, we assume that

• N ≥ 1, m ≥ 2, p > 1, T > 0 and λ > 0;

• the function F : [0, T ]× RN → R is measurable in [0, T ] and is C1 in RN ;

• G : [0, T ]× RN → R is a function such that G( · , x) is continuous on [0, T ] for all x ∈ RN , and
G(t, · ) is C1 on RN for almost every t ∈ [0, T ];

• 0 = t0 < t1 < · · · < tm < tm+1 = T , J = [0, T ] \ {t1, t2, . . . , tm}, u(t) = (u1(t), . . . , uN (t)) and
△(u′i(tj)) = u′i(t

+
j )− u′i(t

−
j ) such that u′i(t±j ) = lim

t→t±j

u′i(t);

• the functions Iij : R → R (i = 1, 2, . . . , N and j = 1, 2, . . . ,m) satisfy |Iij(s)| ≤ Lij |s|p−1 for
every s ∈ R;

• A(t) = (aij(t))N×N is an N ×N continuous symmetric matrix and there is a positive constant
λ such that (A(t)|x|p−2x, x) ≥ λ|x|p for all x ∈ RN and t ∈ [0, T ].

The study of the multiplicity of the solutions of Hamiltonian systems, as particular cases of dynamical
systems, is mathematically important and interesting from a practical point of view. This is because
these systems constitute a natural framework for the mathematical models of many natural phenomena
in fluid mechanics, gas dynamics, nuclear physics, relativistic mechanics, etc. Inspired by the mono-
graphs [27] and [32], the existence and multiplicity of weak solutions for Hamiltonian systems have
been investigated by many authors using variational methods (see, e.g., [13,14,16,18,20,28,30,39,43,46]
and the references therein).

In recent years, critical points theorems were widely used to solve differential equations (see [3, 7,
10–12,19,25] and references therein).

In contrast to Hamiltonian systems, for the general case p > 1, the study of the existence and
multiplicity of periodic solutions is recent (see [21,40]). In [40], Xu and Tang proved the existence of
periodic solutions for the problem{

−
(
|u′|p−2u′

)′
= ∇F (t, u), a.e. t ∈ (0, T ),

u(0)− u(T ) = u′(0)− u′(T ) = 0
(1.2)

by minimax methods in the critical point theory. In [26], Ma and Zhang obtained some results on the
existence and multiplicity of non-trivial periodic solutions for system (1.2). These results generalize
the corresponding results in [34]. In [21], two existence results have been established by the least action
principle and the Mountain-pass lemma for ordinary p-Laplacian systems with nonlinear boundary
conditions.

In [25], based on two general three critical points theorems due respectively to Ricceri (see [33]) and
Averna–Bonanno (see [4]), the authors proved the existence of three solutions for the p-Hamiltonian
system {

−
(
|u′|p−2u′

)′
+A(t)|u|p−2u = λ∇F (t, u) + µ∇G(t, u), a.e. t ∈ J,

u(0)− u(T ) = u′(0)− u′(T ) = 0.

In this article, we use three theorems of Bonanno to prove the existence of one weak solution and two
weak solutions for problem (1.1).
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2 Preliminaries
For a given non-empty set X and two functionals Φ,Ψ : X → R, we define the following functions:

β(r1, r2) := inf
v∈Φ−1(r1,r2)

sup
u∈Φ−1(r1,r2)

Ψ(u)−Ψ(v)

r2 − Φ(v)
,

ρ2(r1, r2) = sup
v∈Φ−1(r1,r2)

Ψ(v)− sup
u∈Φ−1(−∞,r1)

Ψ(u)

Φ(v)− r1

for all r1, r2 ∈ R, r1 < r2, and

ρ(r) = sup
v∈Φ−1(r,∞)

Ψ(v)− sup
u∈Φ−1(−∞,r)

Ψ(u)

Φ(v)− r

for all r ∈ R.
The following critical point theorems due to Bonanno will be used to prove our mail results.

Theorem 2.1 ([6, Theorem 5.1]). Let X be a real Banach space, Φ : X → R be a sequentially weakly
lower semicontinuous, coercive and continuously Gâteaux differentiable function whose Gâteaux deriva-
tive admits a continuous inverse on X∗, and let Ψ : X → R be a continuously Gâteaux differentiable
function whose Gâteaux derivative is compact. Assume that there are r1, r2 ∈ R, r1 < r2, such that

β(r1, r2) < ρ2(r1, r2).

Then, setting Iλ := Φ − λΨ, for each λ ∈ ( 1
ρ2(r1,r2)

, 1
β(r1,r2)

), there is u0,λ ∈ Φ−1(r1, r2) such that
Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1(r1, r2) and I ′λ(u0,λ) = 0.

Theorem 2.2 ( [6, Theorem 5.5]). Let X be a real Banach space, Φ : X → R be a continuously
Gâteaux differentiable function whose Gâteaux derivative admits a continuous inverse on X∗, and let
Ψ : X → R be a continuously Gâteaux differentiable function whose Gâteaux derivative is compact.
Assume that there is r ∈ R, with inf

X
Φ < r < sup

X
Φ, such that

ρ(r) > 0,

and for each λ > 1
ρ(r) , the functional Iλ := Φ− λΨ is coercive. Then for each λ ∈ ( 1

ρ(r) ,+∞), there
is u0,λ ∈ Φ−1(r,+∞) such that Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1(r,+∞) and I ′λ(u0,λ) = 0.

Theorem 2.3 ([5, Theorem 3.2]). Let X be a real Banach space and Φ,Ψ : X → R be two continuously
Gâteaux differentiable functionals such that Φ is bounded from below and Φ(0) = Ψ(0) = 0. Fix
r > 0 such that sup

u∈Φ−1(r,+∞)

Ψ(u) < +∞ and assume that for each λ ∈
(
0, r

sup
u∈Φ−1(r,+∞)

Ψ(u)

)
, the

functional Jλ = Φ − λΦ satisfies the (PS)-condition and is unbounded from below. Then for each
λ ∈

(
0, r

sup
u∈Φ−1(r,+∞)

Ψ(u)

)
, the functional Jλ admits two distinct critical points.

Here, we recall some basic concepts that will be used in what follows. Let

W 1,p
T =

{
u : [0, T ] → RN : u is absolutely continuous, u(0) = u(T ), u′ ∈ Lp([0, T ],RN )

}
,

be endowed with the norm

∥u∥ =

( T∫
0

|u′(t)|p +
(
A(t)|u(t)|p−2u(t), u(t)

)
dt

) 1
p

.
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Observe that

(
A(t)|x|p−2x, x

)
= |x|p−2

N∑
i,j=1

aij(t)xixj ≤ |x|p−2
N∑

i,j=1

|aij(t)| |xi| |xj | ≤
( N∑
i,j=1

∥aij(t)∥∞
)
|x|p.

Then there exists a constant λ ≤
N∑

i,j=1

∥aij(t)∥∞ such that (A(t)|x|p−2x, x) ≤ λ|x|p for all x ∈ RN .

So,
min{1, λ}|||u|||p ≤ ∥u∥p ≤ max{1, λ}|||u|||p, (2.1)

where

|||u||| =
( T∫

0

|u(t)|p dt+
T∫

0

|u′(t)|p dt
) 1

p

is the usual norm of W 1,p
T . Let

k0 = sup
u∈W 1,p

T \{0}

∥u∥∞
∥u∥

, ∥u∥∞ = sup
t∈[0,T ]

|u(t)|, (2.2)

where | · | is the usual norm of RN . Since W 1,p
T ↪→ C0 is compact, one has k0 < +∞ and for each

u ∈ W 1,p
T , there exists ξ ∈ [0, T ] such that |u(ξ)| = mint∈[0,T ] |u(t)|. Hence, by Hölder’s inequality,

one has

|u(t)| =
∣∣∣∣

t∫
ξ

u′(s) ds+ u(ξ)

∣∣∣∣ ≤
T∫

0

|u′(s)| ds+ 1

T

T∫
0

|u(ξ)| ds

≤
T∫

0

|u′(s)| ds+ 1

T

T∫
0

|u(s)| ds ≤ T
1
q

( T∫
0

|u′(s)|p ds
) 1

p

+ T− 1
p

( T∫
0

|u(s)|p ds
) 1

p

≤ max{T
1
q , T− 1

p }
(( T∫

0

|u′(s)|p ds
) 1

p

+

( T∫
0

|u(s)|p ds
) 1

p
)

≤ q
√
2 max{T

1
q , T− 1

p }
( T∫

0

|u′(s)|p ds+
T∫

0

|u(s)|p ds
) 1

p

=
q
√
2 max{T

1
q , T− 1

p }|||u|||

for each t ∈ [0, T ] and q = p
p−1 . So, by (2.1) and the above expression, we obtain

∥u∥∞ ≤ q
√
2 max{T

1
q , T− 1

p }|||u||| ≤ q
√
2 max{T

1
q , T− 1

p }
(

min{1, λ}
)− 1

p ∥u∥.

From this and (2.2) it follows that

k0 ≤ k =
q
√
2 max{T

1
q , T− 1

p }
(

min{1, λ}
)− 1

p .

For all v ∈W 1,p
T we have

−
T∫

0

(
|u′(t)|p−2u′(t)

)′
v(t) dt+

T∫
0

(
A(t)|u(t)|p−2u(t), v(t)

)
dt

− λ

T∫
0

(
∇F (t, u(t)), v(t)

)
dt− µ

T∫
0

(
∇G(t, u(t)), v(t)

)
dt = 0,
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according to the condition of problem (1.1),

T∫
0

[(
|u′(t)|p−2u′(t), v′(t)

)
+
(
A(t)|u(t)|p−2u(t), v(t)

)]
dt

+

p∑
j=1

N∑
i=1

Iij(ui(tj))vi(tj)− λ

T∫
0

(
∇F (t, u(t)), v(t)

)
dt− µ

T∫
0

(
∇G(t, u(t)), v(t)

)
dt = 0 (2.3)

for all v ∈W 1,p
T . As usual, a weak solution to problem (1.1) is any u ∈W 1,p

T that satisfies in (2.3).

3 Main results
For two given non-negative constants θi for i = 1, 2 and a given positive constant d with θpi ̸=
( 1−s1+s )λTk

pdp, put

ad(θi) :=

T∫
0

max
|u|<θi

[
F (t, u(t)) + µ

λ G(t, u(t))
]
dt−

T∫
0

F (t, d) dt

θpi − ( 1−s1+s )λTk
pdp

,

µ1 :=

(1− s)θp1 − (1 + s)λTkpdp − λpkp
T∫
0

max
|u|<θ1

F (t, u) dt+ λpkp
T∫
0

F (t, d) dt

pkp
T∫
0

max
|u|<θ1

G(t, u) dt

,

µ2 :=

(1− s)θp2 − (1 + s)λTkpdp − λpkp
T∫
0

max
|u|<θ2

F (t, u) dt+ λpkp
T∫
0

F (t, d) dt

pkp
T∫
0

max
|u|<θ2

G(t, u) dt

and

s := kp
m∑
j=1

N∑
i=1

Lij < 1.

Now, we present an application of Theorem 2.1 that we will used to obtain one nontrivial weak
solution.
Theorem 3.1. Assume that there exist three nonnegative constants θ1, θ2, and d with

θp1 <
(1 + s

1− s

)
λTkpdp < θp2 (3.1)

such that

(A1)

T∫
0

F (t, d) dt ≥ 0 for every t ∈ [0, T ];

(A2) ad(θ2) < ad(θ1).

Moreover, λ ∈ (1−s)
pkp ( 1

ad(θ1)
, 1
ad(θ2)

) and potential G(t, x) for all (t, x) ∈ [0, T ]×(0,+∞), is nonnegative.
Then for every µ ∈ (µ1, µ2), problem (1.1) admits at least one nontrivial weak solution u1 ∈W 1,p

T .

Proof. Let X = W 1,p
T be endowed with ∥ · ∥. We introduce the functionals φ, ψ : X → R for each u

in X as follows:

φ(u) =
1

p
∥u∥p +

m∑
j=1

N∑
i=1

ui(tj)∫
0

Iij(t) dt
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and

ψ(u) =

T∫
0

F (t, u(t)) dt+
µ

λ

T∫
0

G(t, u(t)) dt,

and put Jλ(u) := φ(u) − λψ(u). Let us prove that the functionals φ and ψ satisfy the conditions. It
is well known that ψ is a differentiable functional whose differential at the point u ∈ X is

ψ′(u)(v) =

T∫
0

(
∇F (t, u(t)), v(t)

)
dt+

µ

λ

T∫
0

(
∇G(t, u(t)), v(t)

)
dt

for every v ∈ X as well as being sequentially weakly upper semicontinuous. Furthermore, ψ′ : X → X∗

is a compact operator. Indeed, it is enough to show that ψ′ is strongly continuous on X. To this end,
for fixed u ∈ X, let un → u weakly in X as n → ∞; then {un} converges uniformly to u on T as
n→ ∞ (see [44]). Since ∇F , ∇G are continuous functions in R for every t ∈ T ,

∇F (t, un) +
µ

λ
∇G(t, un) → ∇F (t, u) + µ

λ
∇G(t, u)

as n→ ∞. Hence ψ′(un) → ψ′(u) as n→ ∞. Thus we have proved that ψ′ is strongly continuous on
X, which implies that ψ′ is a compact operator by Proposition 26.2 of [44]. Furthermore, φ′ : X → X∗

admits a continuous inverse, where

φ′(u)(v) =

T∫
0

[
|u′(t)|p−2u′(t)v′(t) +A(t)|u(t)|p−2u(t)v(t)

]
dt

for every v ∈ X. Clearly, the weak solutions of problem (1.1) are exactly the solutions of the equation
J ′
λ(u) = 0. Now, put

r1 :=
(1− s)

p

(θ1
k

)p
, r2 :=

(1− s)

p

(θ2
k

)p
and w(t) := d.

It is easy to verify that w ∈ X and
(1− s)λT

p
dp ≤ φ(w) ≤ (1− s)λT

p
dp.

In particular, from (3.1) we conclude that
r1 < φ(w) < r2.

On the other hand, for all u ∈ X, we have
φ−1(−∞, r2) =

{
u ∈ X : φ(u) < r2

}
=
{
u ∈ X : |u| < c2

}
,

from which it follows that

sup
u∈ϕ−1(−∞,r2)

ψ(u) = sup
u∈ϕ−1(−∞,r2)

[ T∫
0

(
F (t, u(t)) +

µ

λ
G(t, u(t))

)
dt

]

≤
T∫

0

max
|u(t)|<θ2

[
F (t, u(t)) +

µ

λ
G(t, u(t))

]
dt.

Arguing as before, we obtain

sup
u∈ϕ−1(−∞,r1)

ψ(u) = sup
u∈ϕ−1(−∞,r1)

[ T∫
0

(
F (t, u(t)) +

µ

λ
G(t, u(t))

)
dt

]

≤
T∫

0

max
|u(t)|<θ1

[
F (t, u(t)) +

µ

λ
G(t, u(t))

]
dt.
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Since w(t) > 0 for each t ∈ T , assumption (A1) ensures that

ψ(w) ≥
T∫

0

F (t, d) dt.

Then, due to the fact that G ≥ 0, we get
T∫

0

max
|u|<θ2

[
F (t, u(t)) +

µ

λ
G(t, u(t))

]
dt ≥

T∫
0

F (t, d) dt,

and thus ad(θ2) ≥ 0. At this point, we have

β(r1, r2) ≤
sup

u∈ϕ−1(−∞,r2)

ψ(u)− ψ(w)

r2 − φ(w)

≤

T∫
0

max
|u|<θ2

[
F (t, u(t)) + µ

λ G(t, u(t))
]
dt−

T∫
0

F (t, d) dt

(1−s)
p ( θ2k )

p − (1+s)λT
p dp

=
pkp

(1− s)

T∫
0

max
|u|<θ2

[
F (t, u(t)) + µ

λ G(t, u(t))
]
dt−

T∫
0

F (t, d) dt

θp2 − ( 1+s1−s )λTk
pdp

=
pkp

(1− s)
ad(θ2).

Since ad(θ2) ≥ 0, hypothesis (A2) implies that
T∫

0

max
|u|<θ1

[
F (t, u(t)) +

µ

λ
G(t, u(t))

]
dt <

T∫
0

F (t, d) dt.

So,

ρ2(r1, r2) ≥
ψ(w)− sup

u∈ϕ−1(−∞,r1)

ψ(u)

φ(w)− r1

≥

T∫
0

F (t, d) dt−
T∫
0

max
|u|<θ1

[
F (t, u(t)) + µ

λ G(t, u(t))
]
dt

(1+s)λT
p dp − (1−s)

p ( θ1k )
p

=
pkp

(1− s)

T∫
0

F (t, d) dt−
T∫
0

max
|u|<θ1

[
F (t, u(t)) + µ

λ G(t, u(t))
]
dt

( 1+s1−s )λTk
pdp − θp1

=
pkp

(1− s)
ad(θ1).

Hence, from assumption (A2), β(r1, r2) < ρ2(r1, r2). Therefore, from Theorem 2.1, for each λ ∈
(1−s)
pkp ( 1

ad(θ1)
, 1
ad(θ2)

), the functional Jλ admits at least one critical point u1 such that

r1 < φ(u1) < r2.

Theorem 3.2. Assume that there exist two constants θ and d with(1 + s

1− s

)
λTkpd

p
< θp

such that
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(A3)

T∫
0

F (t, d) dt ≥ 0 for every t ∈ [0, T ];

(A4) lim
|x|→0

|∇G(t, x)|
|x|p−1

= lim
|x|→+∞

|∇G(t, x)|
|x|p−1

= 0 uniformly, for almost every t ∈ [0, T ].

(A5) There exist the constants c > 0 and 1 ≤ q < p such that

|∇F (t, x)| ≤ c(1 + |x|q−1)

for all x ∈ RN and almost every t ∈ [0, T ].

(A6) For any i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . ,m}, there exist the constants aij > 0, bij > 0 and
γij ∈ [0, 1] such that

Iij(y) ≥ −aij − bijy
γij (y ≥ 0) and Iij(y) ≤ aij + bij(−y)γij (y ≤ 0).

Let λ > λ3, where

λ3 :=
(1− s)

pkp
( 1+s1−s )λTk

pd
p − θp

T∫
0

F (t, d) dt−
T∫
0

max
|u|<θ

(
F (t, u) + µ

λ G(t, u)
)
dt

,

whose potential G(t, x) for all (t, x) ∈ [0, T ] × (0,+∞) is nonnegative. Then for every µ ∈ (0, µ3),
where

µ3 :=

(1− s)θp − (1 + s)λTkpdp − λpkp
T∫
0

max
|u|<θ

F (t, u) dt+ λpkp
T∫
0

F (t, d) dt

pkp
T∫
0

max
|u|<θ

G(t, u) dt

,

problem (1.1) admits at least one nontrivial weak solution u3 ∈W 1,p
T .

Proof. Since the critical points of the functional J := φ − λψ on X are exactly the weak solutions
of problem (1.1), our aim is to apply Theorem 2.1 to φ and ψ. It is well-known that φ is a continu-
ously Gateaux differentiable and sequentially weakly lower semicontinuous functional. Moreover, ψ is
continuously Gateaux differentiable and sequentially weakly continuous. Owning to the assumption
(A6), we have

z∫
0

Iij(t) dt ≥ −aijz −
bij

γij + 1
zγij+1 = −aij |z| −

bij
γij + 1

|z|γij+1 (z ≥ 0)

and
0∫
z

Iij(t) dt ≤ −aijz −
bij(−1)γij

γij + 1
zγij+1 = aij |z|+

bij
γij + 1

|z|γij+1 (z < 0).

Therefore, for every i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . ,m} and z ∈ R,
z∫

0

Iij(t) dt ≥ −aij |z| −
bij

γij + 1
|z|γij+1. (3.2)

Thanks to (A4), fixing 0 < ε < min{1,λ}
µ small enough, we can find a constant Cε > 0 such that

|G(t, x)| ≤ Cε +
ε

p
|x|p (3.3)
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for every x ∈ RN and almost every t ∈ [0, T ]. Also, taking (A5) into account, we get

|F (t, x)| ≤ c|x|+ c

q
|x|q (3.4)

for every x ∈ RN and almost every t ∈ [0, T ]. Now, by (3.2), (3.3) and (3.4), for all u ∈ X and λ ∈ R+,
we obtain

φ(u)− λψ(u) =
1

p
∥u∥p − λ

T∫
0

F (t, u(t)) dt− µ

T∫
0

G(t, u(t)) dt+

m∑
j=1

N∑
i=1

ui(tj)∫
0

Iij(t) dt

≥ 1

p
∥u∥p − λ

T∫
0

(
c|u(t)|+ c

q
|u(t)|q

)
dt− µ

T∫
0

(
Cε +

ε

p
|u(t)|p

)
dt

−
m∑
j=1

N∑
i=1

aij |u(tj)| −
m∑
j=1

N∑
i=1

bij
γij + 1

|u(tj)|γij+1

≥ 1

p

(
1− µε

min{1, λ}

)
∥u∥p − 1

q

(
min{1, λ}

)− q
pλc∥u∥q −

(
min{1, λ}

)− 1
pT

1
q λc∥u∥

− µCεT −
m∑
j=1

N∑
i=1

aij |u(tj)| −
m∑
j=1

N∑
i=1

bij
γij + 1

|u(tj)|γij+1.

Since p > q and ε is small enough,
lim

∥u∥→+∞

[
φ(u)− λψ(u)

]
= +∞, (3.5)

which means that the functional Jλ is coercive. Let r := (1−s)
p ( θk )

p and w(x) = d. We obtain

ρ(r) ≥ pkp

(1− s)

T∫
0

F (t, d) dt−
T∫
0

max
|u|<θ

(
F (t, u) + µ

λ G(t, u)
)
dt

( 1+s1−s )λTk
pd

p − θp
.

So, from our assumption it follows that ρ(r) > 0. Hence, from Theorem 2.2 for each λ > λ3, the
functional Jλ admits at least one local minimum u3 such that

φ(u3) > r,

and the conclusion is achieved.

Now, we present an application of Theorem 2.2 which will be used to obtain two nontrivial weak
solutions.
Theorem 3.3. Suppose F and G satisfy the assumptions (Ai) for i = 4, 5, 6 and there are M > 0
and σ > p such that
(A7) 0 < σF (t, x) ≤ ⟨∇F (t, x), x⟩ for all x ∈ RN with |x| ≥M and a.e. t ∈ [0, T ].
Let λ ∈ (0, λ4), where

λ4 :=
(1− s)

pkp
θp

T∫
0

max
|u|<θ

(
F (t, u) + µ

λ G(t, u)
)
dt

,

whose potential G(t, x) for all (t, x) ∈ [0, T ] × (0,+∞) is non-negative. Then for every µ ∈ (0, µ4),
where

µ4 :=

(1− s)θp − λpkp
T∫
0

max
|u|<θ

F (t, u) dt

pkp
T∫
0

max
|u|<θ

G(t, u) dt

,

problem (1.1) admits two distinct critical points.
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Proof. We prove this theorem by using the same reasoning as in the proof of Theorem 2.3. First, we
show that Jλ satisfies the (PS)-condition. Suppose that {un}∞n=1 is a (PS)-sequence of Jλ, that is,
there exists C > 0 such that

Jλ(un) → C, J ′
λ(un) → 0 as n→ ∞.

Assume that ∥un∥ → +∞. Then (3.5) contradicts Jλ(un) → C; hence {un}∞n=1 is bounded in W 1,p
T .

We may assume that there exists u0 ∈W 1,p
T satisfying un → u0 weakly in W 1,p

T , un → u0 in Lp[0, T ],
un(t) → u0(t) for almost every t ∈ [0, T ]. Observe that

J ′
λ(un)(un − u0) =

T∫
0

[(
|u′n(t)|p−2u′n(t), u

′
n(t)− u′0(t)

)
+
(
A(t)|un(t)|p−2un(t), un(t)− u0(t)

)]
dt

− λ

T∫
0

(
∇F (t, un(t)), un(t)− u0(t)

)
dt− µ

T∫
0

(
∇G(t, un(t)), un(t)− u0(t)

)
dt

+

m∑
j=1

N∑
i=1

Iij
(
(un)i(tj)

)(
(un)i(tj)− (u0)i(tj)

)
.

We already know that
J ′
λ(un)(un − u0) → 0 as n→ ∞.

By (A4). given ε > 0, we can find a constant Cε > 0 such that

|∇G(t, x)| ≤ Cε + ε|x|p−1

for every x ∈ RN and almost every t ∈ [0, T ]. So,

T∫
0

(
∇G(t, un(t)), un(t)− u0(t)

)
dt→ 0 as n→ ∞.

Moreover, by (A5),
T∫

0

(
∇F (t, un(t)), un(t)− u0(t)

)
dt→ 0 as n→ ∞.

Also,
m∑
j=1

N∑
i=1

Iij
(
(un)i(tj)

)(
(un)i(tj)− (u0)i(tj)

)
→ 0 as n→ ∞.

Therefore,

T∫
0

[(
|u′n(t)|p−2u′n(t), u

′
n(t)− u′0(t)

)
+
(
A(t)|un(t)|p−2un(t), un(t)− u0(t)

)]
dt→ 0 as n→ ∞.

This, together with the weak convergence of un → u0 in W 1,p
T , implies that

un → u0 in W 1,p
T as n→ ∞.

Hence Jλ satisfies the (PS)-condition. Finally, we prove that Jλ is unbounded from below. Owning
to the assumption (A7), we can find δ > 0 such that for every M > 0, one has

|F (t, x)| > M |x|σ for 0 < |x| ≤ δ and almost every t ∈ [0, T ].



126 Arezou Soleimani Nia, Ghasem A. Afrouzi, Hadi Haghshenas

We choose a nonzero nonnegative function v ∈ C∞
0 ([0, T ]) and take ε > 0 small enough. Then we

obtain

J(εv) =
1

p
∥εv∥p − λ

T∫
0

F (t, εv(t)) dt− µ

T∫
0

G(t, εv(t)) dt+

m∑
j=1

N∑
i=1

εvi(t)(tj)∫
0

Iij(t) dt

≤ εp

p
∥v∥p − λMεσ

T∫
0

|v(t)|σ dt−
m∑
j=1

N∑
i=1

aij |u(tj)| −
m∑
j=1

N∑
i=1

bij
γij + 1

|u(tj)|γij+1

<
εp

p
∥v∥p − λMεσ

T∫
0

|v(t)|σ dt−
m∑
j=1

N∑
i=1

aij |εvi(t)(tj)| −
m∑
j=1

N∑
i=1

bij
γij + 1

|εvi(t)(tj)|γij+1.

Since σ > p, this condition guarantees that Jλ is unbounded from below. Now, we have

sup
u∈ϕ−1(r,+∞)

ψ(u)

r
≤

T∫
0

max
|u|<θ

(
F (t, u) + µ

λ G(t, u)
)
dt

(1−s)
p ( θk )

p
=

pkp

(1− s)

T∫
0

max
|u|<θ

(
F (t, u) + µ

λ G(t, u)
)
dt

θp
.

Finally, for each λ ∈
(
0, r

sup
u∈ϕ−1(r,+∞)

ψ(u)

)
, problem (1.1) admits two distinct critical points.

4 Applications
In this section, we point out some consequences and applications of the results previously obtained.

Theorem 4.1. Assume that there exist two positive constants θ and d with(1 + s

1− s

)
λTkpdp < θp

such that assumption (A1) in Theorem 3.1 holds. Furthermore, suppose that

(A8)

T∫
0

max
|v|<θ

F (t, v) dt

θp
<

T∫
0

F (t, d) dt

( 1+s1−s )λTk
pdp

.

Then for each

λ ∈ (1− s)

pkp

(
( 1+s1−s )λTk

pdp

T∫
0

F (t, d) dt

,
θp

T∫
0

max
|v|<θ

F (t, v) dt

)
,

the problem 
−
(
|u′|p−2u′

)′
+A(t)|u|p−2u = λ∇F (t, u), a.e. t ∈ J,

△
(
|u′i(tj)|p−2u′i(tj)

)
= Iij(ui(tj)), i = 1, 2, . . . , N, j = 1, 2, . . . ,m,

u(0)− u(T ) = u′(0)− u′(T ) = 0,

admits at least one nontrivial weak solution.

Proof. The conclusion follows from Theorem 3.2, by taking θ1 = 0, θ2 = θ and µ = 0. Indeed, owing
to assumption (A8), one has

aη(θ) =

T∫
0

max
|v|<θ

F (t, v) dt−
T∫
0

F (t, d) dt

θp − ( 1+s1−s )λTk
pdp

<

(
1− ( 1+s

1−s )λTk
pdp

θp

) T∫
0

max
|v|<θ

F (t, v) dt

θp − ( 1+s1−s )λTk
pdp

=
1

θp

T∫
0

max
|v|<θ

F (t, v) dt.
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On the other hand,

aη(0) =

T∫
0

F (t, d) dt

( 1+s1−s )λTk
pdp

.

Hence, in view of (A8), Theorem 3.2 ensures the conclusion.

Now, we suppose that ∇F : [0, T ] × RN → R is a nonnegative function. We note the following
lemma, which is useful to obtain the results on the existence of nonnegative solutions.
Lemma. Let ∇F : [0, T ]×RN → R be a nonnegative function. Suppose that u ∈ X is a weak solution
of problem (1.1). Then u is nonnegative.
Proof. Put u− = −min{u, 0}. Then u− ∈ X. Taking into account that u is a weak solution and
choosing v = u−, we obtain

0 ≤ λ

T∫
0

(
∇F (t, u(t)), u−(t)

)
dt+ µ

T∫
0

(
∇G(t, u(t)), u−(t)

)
dt

=

T∫
0

[(
|u′(t)|p−2u′(t), (u−)′(t)

)
+
(
A(t)|u(t)|p−2u(t), u−(t)

)]
dt+

m∑
j=1

N∑
i=1

Iij(ui(tj))u
−
i (tj)

= −∥u−∥p −
m∑
j=1

N∑
i=1

Iij(ui(tj))u
−
i (tj).

That is, u− = 0 a.e. in [0, T ]. Hence our claim is proved.

Now, we point out a result when the nonlinear term has separable variables. To be precise, let
m : [0, T ] → R be a function such that m ∈ L1([0, T ]), m(t) ≥ 0 a.e. t ∈ [0, T ], m ̸= 0, and let
∇H : RN → R be a nonnegative and continuous function. Consider the following problem:

−
(
|u′|p−2u′

)′
+A(t)|u|p−2u = λm(t)∇H(u(t)), a.e. t ∈ J,

△
(
|u′i(tj)|p−2u′i(tj)

)
= Iij(ui(tj)), i = 1, 2, . . . , N, j = 1, 2, . . . ,m,

u(0)− u(T ) = u′(0)− u′(T ) = 0.

(4.1)

Theorem 4.2. Assume that (A5) and (A6) hold and there exist σ > p and M > 0 such that

0 < σH(s) ≤ s∇H(s) (4.2)

for all s ∈ RN with |s| ≥M . Then for each λ ∈ (0, λ∗), where

λ∗ :=
(1− s)

pkp∥m∥L1([0,T ])
max
θ>0

θp

H(θ)
,

problem (4.1) has at least two nonnegative and non-zero weak solutions.
Corollary. Let ∇F : RN → R be nonnegative and continuous function and assume (4.2) holds. Then
for each that λ ∈ (0, λ∗∗), where

λ∗∗ :=
(1− s′)

pkp
max
θ>0

θp

H(θ)
and s′ := kp

m∑
j=1

Ij < 1,

the problem 
−
(
|u′|p−2u′

)′
+ |u|p−2u = λ∇H(u(t)), a.e. t ∈ J,

△
(
|u′(tj)|p−2u′(tj)

)
= Ij(u(tj)), j = 1, 2, . . . ,m,

u(0)− u(T ) = u′(0)− u′(T ) = 0

has two nonnegative and non-zero classical solutions.
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Proof. This is a consequence of Theorem 4.2 with µ = 0, A(t) = I, where I is the identity matrix of
order p× p, and m(t) = 1 for all t ∈ [0, T ].

Example 4.1. Consider p = 4 and the function ∇H(t) = 5t4 + 1 satisfying (4.2). We observe that
max
θ>0

θ4

H(θ) =
4√27
4 , and for each λ ∈ (0, 0.066),


−
(
|u′|2u′

)′
+ |u|2u = λ∇H(u(t)), a.e. t ∈ (0, 1),

△
(
|u′(t)|2u′(t)

)
= I(u(t)),

u(0)− u(1) = u′(0)− u′(1) = 0

admits at least two non-zero and nonnegative solutions.

Example 4.2. Consider p = 3 and the function

h(t) =


3

2

√
t+ 5t4, t ≥ 0,

0, t < 0.

We observe that it is enough to pick, for instance, µ = 4 and that (4.2) holds. Moreover, max
θ>0

θ3

H(θ) =

2 7√54
7 , and for each λ ∈ (0, 0.08),

−
(
|u′|u′

)′
+ |u|u = λ∇H(u(t)), a.e. t ∈ (0, 1),

△
(
|u′(t)|u′(t)

)
= I(u(t)),

u(0)− u(1) = u′(0)− u′(1) = 0

admits at least two non-zero and nonnegative solutions.
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