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Abstract. In this paper, the existence and uniquenesss of a solution of an initial-value problem of a
self-referred differential equation with weight is investigated. In addition, the Lipschitzian continuity
of this unique solution is also considered.
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1 Introduction
Let X be a space of functions, A : X → R and B : X → R be funtionals. Consider the equation

Au(x, t) = u(Bu(x, t), t), (1.1)

where u = u(x, t), (x, t) ∈ R × [0,+∞), is an unknown function satisfying some initial conditions at
t = 0 for every x ∈ R. Equation (1.1) is called a self-referred equation. Many authors have investigated
(1.1) for different A and B (see [1–5] and the references therein).

In [3], the authors considered the existence and uniqueness of a local solution of the following
initial-value problem of a self-referred differential equation associated with an integral operator:

∂

∂t
u(x, t) = u

( t∫
0

u(x, s) ds, t

)
, t > 0,

u(x, 0) = u0(x), x ∈ R,

(1.2)

where (x, t) ∈ R × R+ and u0 is a given function. Then, replacing the integral operator in (1.2)
by some integral operators with weight, the authors also got the existence and uniqueness of a local
solution of the initial-value problems

∂

∂t
u(x, t) = u

(
1

t

t∫
0

u(x, s) ds, t

)
, t > 0,

u(x, 0) = u0(x), x ∈ R,

(1.3)

and 
∂

∂t
u(x, t) = u

( t∫
0

1

2δ(s)

x+δ(s)∫
x−δ(s)

u(ξ, s) dξ ds, t

)
, t > 0,

u(x, 0) = u0(x), x ∈ R,

(1.4)

where (x, t) ∈ R× R+ and u0 is a given function.
In [6], the authors studied the following system of two partial-differential equations with self-

reference and weighted hereditary:

∂

∂t
u(x, t) = u

(
f(u(x, t)) + v

(
1

t

t∫
0

u(x, s) ds+ φ(u(x, t)), t

)
, t

)
,

∂

∂t
v(x, t) = v

(
g(v(x, t)) + u

(
1

t

t∫
0

v(x, s) ds+ ψ(u(x, t)), t

)
, t

)
,

(1.5)

associated with the initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x).

With some appropriate conditions on the given functions f , g, φ, ψ, u0 and v0, the uniqueness of a
local solution and the existence of a global solution of this problem were proved.

By considering (1.1) in one-dimensional space setting and the Chandrase–Khar kernel, the general
state-dependent integral equation via Chandrase–Khar kernel

x(t) = b(t) + λx

( t∫
0

t

t+ s
g(s, x(s)) ds

)
, t ∈ [0, 1], (1.6)

was investigated in [7] under some conditions on the given functions b and g. The existence of a
solution of (1.6) and the continuous dependence of this solution were obtained.
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As a generalization of (1.3), (1.4), (1.5) and (1.6), this paper deals with the following initial-value
problem of a self-referred differential equation with weight:

∂

∂t
u(x, t) = u

(
au(x, t) +

t∫
0

1

2δ(s)

x+δ(s)∫
x−δ(s)

u(ξ, s) dξ ds, t

)
,

u(x, 0) = u0(x),

(1.7)

where (x, t) ∈ R × R⋆, R⋆ = R+ ∪ {0}, a ∈ R; u0 and δ > 0 are the given real functions and u is an
unknown function. Using a fixed-point method, the existence and uniqueness of a solution of (1.7)
are studied. In addition, the Lipschitz property of this solution is also obtained.

2 Main results
In this section, we study the existence and uniqueness of a solution of the following initial-value
problem of a self-referred differential equation with weight

∂

∂t
u(x, t) = u

(
au(x, t) +

t∫
0

1

2δ(s)

x+δ(s)∫
x−δ(s)

u(ξ, s) dξ ds, t

)
, t ≥ 0, x ∈ R,

u(x, 0) = u0(x), x ∈ R,

where x ∈ R, t ≥ 0, a ∈ R, u0(0) and δ(s) > 0 are two given functions, u is an unknow function.
First, denote

C(R× [0,+∞),R) =
{
u : R× [0,+∞) → R, u is continuous and bounded

}
.

For u ∈ C(R× [0,+∞),R), consider the following operator:

Tu(x, t) = u0(x) +

t∫
0

u

(
au(x, t) +

τ∫
0

1

2δ(s)

x+δ(s)∫
x−δ(s)

u(ξ, s) dξ ds, τ

)
dτ,

where u0 and δ are the given real continuous functions.

Remark. Given a continuous and bounded function f : R → R and a non-negative function δ : R →
[0,+∞), it follows that

∣∣∣∣
x+δ(s)∫

x−δ(s)

f(ξ) dξ −
y+δ(s)∫

y−δ(s)

f(ξ) dξ

∣∣∣∣
=

∣∣∣∣
0∫

x−δ(s)

f(ξ) dξ +

x+δ(s)∫
0

f(ξ) dξ +

y−δ(s)∫
0

f(ξ) dξ −
y+δ(s)∫
0

f(ξ) dξ

∣∣∣∣
=

∣∣∣∣
y−δ(s)∫

x−δ(s)

f(ξ) dξ +

x+δ(s)∫
y+δ(s)

f(ξ) dξ

∣∣∣∣ ≤ 2∥f∥∞|x− y|. (2.1)

Suppose that

(M1) a ∈ R;

(M2) u0 is a bounded function in R, ∥u0∥L∞(R,R) < +∞;
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(M3) u0 is Lipschitz, which means that there exists L0 ≥ 0 such that

|u0(x)− u0(y)| ≤ L0|x− y|

for all x, y ∈ R;

(M4) δ : R → [0,+∞) satisfies the condition

t∫
0

1

δ(s)
ds < +∞

for all t > 0.

We consider the sequence of functions (un)n defined by recurrence formula:

u1(x, t) = u0(x) +

t∫
0

u0

(
au0(x) +

τ∫
0

1

2δ(s)

x+δ(s)∫
x−δ(s)

u0(ξ)dξ ds

)
dτ,

un+1(x, t) = u0(x) +

t∫
0

un

(
aun(x, τ) +

τ∫
0

1

2δ(s)

x+δ(s)∫
x−δ(s)

un(ξ, s)dξ ds, τ

)
dτ,

where t ≥ 0, x ∈ R, n ≥ 1.
We see that

|u1(x, t)| ≤ ∥u0∥∞(1 + t),

|u2(x, t)| ≤ ∥u0∥∞
(
1 + t+

t2

2

)
.

By induction on n, we get

|un(x, t)| ≤ ∥u0∥∞
n∑

i=1

ti

i!
.

Therefore, we can choose T1 > 0 such that

∥un∥L∞(R×[0,T1]) ≤ ∥u0∥∞
n∑

i=1

T i
1

i!
≤ eT1∥u0∥∞. (2.2)

On the other hand, we have

0 ≤ |u1(x, t)− u0(x)| ≤ ∥u0∥∞t = A1(t), ∀x ∈ R, t > 0.

Furthermore,

|u1(x, t)− u1(y, t)| ≤
[
L0 +

t∫
0

L0

(
|a|L0 + ∥u0∥∞

τ∫
0

1

δ(s)
ds

)
dτ

]
|x− y| := L1(t)|x− y|,

where

L1(t) = L0 +

t∫
0

L0

(
|a|L0 + ∥u0∥∞

τ∫
0

1

δ(s)
ds

)
dτ.

Since

u2(x, t) = u0(x) +

t∫
0

u1

(
au1(x, τ) +

τ∫
0

1

2δ(s)

x+δ(s)∫
x−δ(s)

u1(ξ, s) dξ ds, τ

)
dτ,
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we have

|u2(x, t)− u1(x, t)| ≤
t∫

0

[ ∣∣∣∣u1(au1(x, τ) +
τ∫

0

1

2δ(s)

x+δ(s)∫
x−δ(s)

u1(ξ, s) dξ ds, τ

)

− u0

(
au1(x, τ) +

τ∫
0

1

2δ(s)

x+δ(s)∫
x−δ(s)

u1(ξ, s) dξ ds

)∣∣∣∣
+

∣∣∣∣u0(au1(x, τ) +
τ∫

0

1

2δ(s)

x+δ(s)∫
x−δ(s)

u1(ξ, s) dξ ds

)

− u0

(
au0(x) +

τ∫
0

1

2δ(s)

x+δ(s)∫
x−δ(s)

u0(ξ) dξ ds

)∣∣∣∣
]
dτ

≤
t∫

0

[
A1(τ) + L0

(
|a|A1(τ) +

τ∫
0

A1(s) ds

)]
dτ

=

t∫
0

[(
1 + L0|a|

)
A1(τ) + L0

τ∫
0

A1(s) ds

]
dτ

:= A2(t).

Furthermore,

|u2(x, t)− u2(y, t)|

≤ L0|x− y|+
t∫

0

L1(τ)

[
|a|L1(τ) + ∥u1∥L∞(R×[0,T1)])

τ∫
0

1

δ(s)
ds

]
|x− y| dτ

= |x− y|
[
L0 +

t∫
0

L1(τ)

(
|a|L1(τ) + eT1∥u0∥∞

τ∫
0

1

δ(s)
ds

)
dτ

]
= L2(t)|x− y|,

where

L2(t) = L0 +

t∫
0

L1(τ)

(
|a|L1(τ) + eT1∥u0∥∞

τ∫
0

1

δ(s)
ds

)
dτ.

By induction on n, we get

|un+1(x, t)− un+1(y, t)|

≤ L0|x− y|+
t∫

0

Ln(τ)

[
|a|Ln(τ) + ∥u1∥L∞(R×[0,T1])

τ∫
0

1

δ(s)
ds

]
|x− y| dτ

= |x− y|
[
L0 +

t∫
0

Ln(τ)

(
|a|Ln(τ) + eT1∥u0∥∞

τ∫
0

1

δ(s)
ds

)
dτ

]
= Ln+1(t)|x− y|,

where

Ln+1(t) = L0 +

t∫
0

Ln(τ)

(
|a|Ln(τ) + eT1∥u0∥∞

τ∫
0

1

δ(s)
ds

)
dτ.
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It is easy also to prove that

|un+1(x, t)− un(x, t)| ≤ An+1(t), ∀x ∈ R, 0 ≤ t ≤ T1, ∀n ∈ N,

and
|un+1(x, t)− un+1(y, t)| ≤ Ln+1|x− y|, ∀x, y ∈ R, 0 ≤ t ≤ T1, ∀n ∈ N,

where

An+1(t) =

t∫
0

[(
1 + |a|Ln(τ)

)
An(τ) + Ln(τ)

τ∫
0

An(s) ds

]
dτ,

Ln+1(t) = L0 +

t∫
0

Ln(t)

(
|a|Ln(τ) + eT1∥u0∥∞

τ∫
0

1

δ(s)
ds

)
dτ.

Let M0 > 0, putting c⋆ =
T1∫
0

1
δ(s) ds, T2 ≤ T1, such that for every 0 ≤ t ≤ T2,

L0

(
|a|L0 + eT1∥u0∥∞c⋆

)
t ≤M0,

(M0 + L0)
[
|a|(M0 + L0) + eT1∥u0∥∞c⋆

]
t ≤M0,

t2

2
(M0 + L0) +

(
(M0 + L0)|a|+ 1

)
t ≤ h < 1,

we can see that

0 ≤ L1((t)− L0 ≤
t∫

0

L0

(
|a|L0 + eT1∥u0∥∞

T1∫
0

1

δ(s)
ds

)
dτ

≤
t∫

0

L0

(
|a|L0 + eT1∥u0∥∞c⋆

)
dτ ≤ L0

(
|a|L0 + eT1∥u0∥∞c⋆

)
t ≤M0

and

0 ≤ L2(t)− L0

≤
t∫

0

L1(τ)

(
|a|L1(τ) + eT1∥u0∥∞

T1∫
0

1

δ(s)
ds

)
dτ ≤

t∫
0

L1(τ)
(
|a|L1(τ) + eT1∥u0∥∞c⋆

)
dτ

=

t∫
0

[
L1(τ)− L0 + L0

](
|a|

[
L1(τ)− L0 + L0

]
+ eT1∥u0∥∞c⋆

)
dτ

≤
t∫

0

(M0 + L0)
[
|a|(M0 + L0) + eT1∥u0∥∞c⋆

]
dτ

≤ (M0 + L0)
[
|a|(M0 + L0) + eT1∥u0∥∞c⋆

]
t ≤M0.

By induction on n, we get

0 ≤ t ≤ T2, 0 ≤ Ln(t)− L0 ≤M0, ∀n ∈ N.

So, we obtain
0 ≤ t ≤ T2, 0 ≤ Ln(t) ≤ L0 +M0, ∀n ∈ N.
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As a result, it follows that

An+1(t) =

t∫
0

[(
1 + |a|Ln(τ)

)
An(τ) + Ln(τ)

τ∫
0

An(s) ds

]
dτ

≤
t∫

0

[(
1 + |a|(M0 + L0)

)
∥An∥L∞([0,T2]) + τ(M0 + L0)∥An∥L∞([0,T2])

]
dτ

= ∥An∥L∞([0,T2])

[(
1 + |a|(M0 + L0)

)
t+ (M0 + L0)

t2

2

]
≤ h∥An∥L∞([0,T2]).

In conclusion, the series
∞∑

n=0

∥An∥L∞([0,T2])

is convergent and we deduce that the sequence (un) is uniformly convergent to a function u⋆ ∈ X. It
is easy to prove that u⋆ is the solution of Problem (1.7), ∀x ∈ R, t ∈ [0, T2]. Moreover, the solution
u⋆ is unique. In fact, we assume that u(x, t) is also the solution of Problem (1.7). Then we have

∣∣u(x, t)− u⋆(x, t)
∣∣ = ∣∣∣∣u0(x) +

t∫
0

u

(
au(x, τ) +

τ∫
0

1

2δ(s)

x+δ(s)∫
x−δ(s)

u(ξ, τ) dξ ds, τ

)
dτ

−
[
u0(x) +

t∫
0

u⋆
(
au⋆(x, τ) +

τ∫
0

1

2δ(s)

x+δ(s)∫
x−δ(s)

u⋆(ξ, τ) dξ ds, τ

)
dτ

]∣∣∣∣
≤

∣∣∣∣
t∫

0

u

(
au(x, τ) +

τ∫
0

1

2δ(s)

x+δ(s)∫
x−δ(s)

u(ξ, τ) dξ ds, τ

)
dτ

−
t∫

0

u⋆
(
au⋆(x, τ) +

τ∫
0

1

2δ(s)

x+δ(s)∫
x−δ(s)

u⋆(ξ, τ) dξ ds, τ

)
dτ

∣∣∣∣
≤

t∫
0

∣∣∣∣u(au(x, τ) +
τ∫

0

1

2δ(s)

x+δ(s)∫
x−δ(s)

u(ξ, τ) dξ ds, τ

)

− u⋆
(
au(x, τ) +

τ∫
0

1

2δ(s)

x+δ(s)∫
x−δ(s)

u(ξ, τ) dξ ds, τ

)∣∣∣∣ dτ
+

t∫
0

∣∣∣∣u⋆(au(x, τ) +
τ∫

0

1

2δ(s)

x+δ(s)∫
x−δ(s)

u(ξ, τ) dξ ds, τ

)

− u⋆
(
au⋆(x, τ) +

τ∫
0

1

2δ(s)

x+δ(s)∫
x−δ(s)

u⋆(ξ, τ) dξ ds, τ

)∣∣∣∣ dτ
≤

t∫
0

∥u− u⋆∥∞ dτ

+

t∫
0

(M0 + L0)

[
|a| ∥u− u⋆∥∞ +

τ∫
0

1

2δ(s)

x+δ(s)∫
x−δ(s)

∥u− u⋆∥∞ dξ ds

]
dτ
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= ∥u− u⋆∥∞t+ (M0 + L0)∥u− u⋆∥∞

t∫
0

[
|a|+

τ∫
0

1

2δ(s)

x+δ(s)∫
x−δ(s)

dξ ds

]
dτ

= ∥u− u⋆∥∞t+ (M0 + L0)∥u− u⋆∥∞

t∫
0

[
|a|+

τ∫
0

ds

]
dτ

= ∥u− u⋆∥∞t+ (M0 + L0)∥u− u⋆∥∞

t∫
0

[
|a|+ τ

]
dτ

= ∥u− u⋆∥∞
[
(M0 + L0)

(
|a|t+ t2

2

)
+ t

]
= ∥u− u⋆∥∞

[ t2
2
(M0 + L0) +

(
(M0 + L0)|a|+ 1

)
t
]

≤ ∥u− u⋆∥∞ · h.

Since 0 < h < 1, we deduce ∥u− u⋆∥∞ = 0. We conclude that u⋆(x, t) is the unique solution of (1.7).
Moreover, from (2.1) it follows that

|u⋆(x, t)− u⋆(y, t)| ≤ (M0 + L0)|x− y|, ∀x, y ∈ R, t ∈ [0, T2],

and from (2.2) it follows
|u⋆(x, t2)− u⋆(x, t1)| ≤ eT1∥u0∥∞|t2 − t1|,

hence u⋆ is Lipschitz in the first variable (uniformly with respect to the second one) and is Lipschitz
in the second variable (uniformly with respect to the first one).

To summarize, the following theorem is proved.

Theorem. Suppose (M1)–(M4) hold. There exists T > 0 such that Problem (1.7) has a unique solution
u ∈ C(R × [0, T ],R) ∩ L∞(R × [0, T ],R). In addition, u is Lipschitz in the first variable (uniformly
with respect to the second one), and Lipschitz in the second variable (uniformly with respect to the
first one).
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