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p(z)-KIRCHHOFF TYPE PROBLEMS WITHOUT (AR)-CONDITION



Abstract. In this paper, we study the following p(x)-Kirchhoff problem

Q
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where M : Ry — Ry is a continuous function and the nonlinear term g : 2 x R — R satisfies the
Carathéodory condition. Using the mountain pass theorem with the Cerami condition, we give a
result on the existence of at least one nontrivial solution without assuming the (AR)-condition. Next,
Employing the fountain theorem, we show the existence of infinitely many solutions of the above
problem.
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1 Introduction and main results

In recent years, there has been a lot of interest in differential equations and variational problems with
nonstandard p(x)-growth conditions. It illuminates a wide range of applications in a variety of fields,
including elastic mechanics, electro-rheological fluid dynamics and image processing [18,19].

The purpose of this paper is to study the existence of nontrivial weak solutions for Kirchhoff type
equations involving the p(z)-Laplacian with Dirichlet boundary condition

1
M(/ \Vu|p($) dz)A U =g(z,u) inQ,
J pl) 7 (1.1)

u =0 on 0L,

where Q C RY is a bounded domain with smooth boundary, p € C (), M : R, — R, is a continuous
function, Apyu := div (|[Vu[P(®~=2Vu) denotes the p(z)-Laplacian operator and the nonlinear term
g : 2 x R — R satisfies the Carathéodory condition.

Critical point theory has become one of the most important tools for determining solutions to
elliptic equations of variational type since the original work of A. Ambrosetti and P. H. Rabinowitz
[2]. In particular, the elliptic problem (1.1) has been intensively studied for many years. The key
ingredient to obtain the existence of solutions for superlinear problems is the condition introduced by
A. Ambrosetti and P. H. Rabinowitz ((AR)-condition for short).

Many authors have lately investigated problem (1.1), and a plenty of results have been obtained.
Let us review some previous results that led us to this study. By means of critical point theorems,
G. Dai and R. Hao [6] obtained the results on the existence and multiplicity of solutions for problem
(1.1), where the nonlinear term g satisfies the (AR)-condition:

(AR) there exist T' > 0, # > pT such that for [t| > T and a.e. x € Q, 0 < 0G(z,t) < tg(z,t), where
¢
G(z,t) = [g(z,s)ds.
0

In [3], M. Avci studied problem (1.1) in the particular case when M = 1:

—Apzyu = Ag(z,u) inQ,
u=~0 on 0,

and he established the existence and multiplicity of solutions to the above problem when the nonlinear
term g does not satisfy the (AR)-condition.

In addition, under the (AR)-condition and some weaker assumptions, Afrouzi et al. in [1] proved
that problem (1.1) has at least one nontrivial solution or infinitely many solutions. Their approach
was based on the Mountain Pass Theorem and Fountain Theorem.

To state our results, we make the subsequent hypotheses on M and g:

My) M : R, — R, is a decreasing function.
( + + g
(M) There exist mg > mq > 0 and 5 > « > 1 such that for all t € R,

mit®t < M(t) < motP L,

g1) There exist ¢; > 0 and v € C (Q) with y(x) < p*(z) for each = € Q such that
+
lg(z,t)| < er(1+ |t|"’(’”)_1) for all (x,t) € 2 xR,

where
Np(z)
p*(z) = ¢ N —p(z)
~+o0 if p(z) > N.

if p(x) < N,
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(92) g(z,t) = 0(\t|°‘p+_1) ast — 0 for x € Q uniformly, where a comes from (M;) and p* := sup p(x).
€N

t t
(93) hm inf i(§p+) = o0 uniformly a.e Vz € Q, where G(z,t) = [ g(z,s) ds and 8 comes from (M).
0

(94) There exists a positive constant Cy > 0 such that G(x,t) < G(z,s)+Cp forany x € Q, 0 <t < s
or s <t <0, where G(z,t) := tg(z,t) — BpTG(x,1).

(g5) g(x —t) = —g(z,t) for all (z,t) € Q x R.

As is known, the main role in utilizing the famous Ambrosetti-Rabinowitz type conditions is to
ensure the boundedness of the Palais—Smale type sequences of the corresponding functional, since this
condition sometimes may be very restrictive and excludes many interesting nonlinearities. Indeed,
there are several functions which are superlinear at infinity and at the origin but do not satisfy
(AR)-condition. For example, the function

1 |¢fr =1

z,t) = |t/PP 2t In(1 + |t]) + —
g(z,t) = |t] (T+1¢) Bt 111l

does not satisfy the (AR)-condition, but it satisfies our conditions (g1)—(gs)-

Remark 1.1. Notice that the condition (g4) is a consequence of the following condition (g4)’, which
was firstly introduced by Miyagaki and Souto [17] and developed by Li and Yang [16] and C. Ji [14]:

(94)" There exists to > 0 such that for all x € Q,

g(z,t)

. . > . < ¢
7\t| Bt =21 is increasing when t >ty and decreasing when t < —tg

Now, we present the main results of this paper.

Theorem 1.1. It is assumed that (My), (My), (91), (92), (g93) and (ga) are satisfied. If v~ > ap™,
then problem (1.1) has at least one nontrivial solution.

Theorem 1.2. Suppose that (My), (My), (91), (g3), (94) and (gs) are satisfied. If v~ > ap™, then
problem (1.1) possesses infinitely many solutions with unbounded energy.

2 Preliminaries

To study problem (1.1), we need the following preliminary results. For more details, we refer to
[7,9-11,15] and the references therein.
For

peCy(Q):= {p €cCc(Q): p = i%p(x) > 1},

we designate the variable exponent Lebesgue space by

LP@(Q) = {u : Q — R is measurable and /|u(1’)|p(1) dx < +oo}

equipped with the Luxemburg norm

(=)
|u|p(m)—1nf{)\>0 / Tx)p dx<1}.

Q
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Proposition 2.1 ([7]).

(1) The variable exponent Lebesque space (LP™)(Q ) |+ |p@)) is defined as the dual space L1 (1),

where q(x) is conjugate to p(x), i.e., ——~ + = 1. For any u € LP™®)(Q) and v € LI®)(Q),

7 p(x)
‘/uvdm

(2) If p1,p2 € C(Q), p1(x) < po(x) for all x € Q, then LP>®)(Q) — LP1(*)(Q) and the embedding
18 continuous.

q(fv)
we have

< (o + =) o vler < 2o oo

On LP(®)(Q), we define the modular p : LP®)(Q) — R as follows:
plu) = [ da.
Q

The relation between p and | - is established by the following result.

lp(e)
Proposition 2.2 ([9]). For u,u, € LP@)(Q), n=1,2,..., we have
(D) Julp@y <1(=1; > 1) <= p(u) <1(=1; >1);
(2) for w0, luly = A <= p(%) = 1

- +
(3) ‘u|p(w) >1= |u|g(z) < P(U) < |U|g(z);

+
(4) ‘u|p(w) <l= |u|g($) <pu) < |u|p(x)
(5) The following statements are equivalent to each other:
() lim |un — ulp@) = 0;
(b) lim p(up —u) =0;

(¢) un — w in measure in Q and lim p(u,) = p(u).
n—oo

(6) HILH;O [tin|p(z) = 00 <= nlim p(uy,) = 00.

— 00

The generalized Lebesgue-Sobolev space W1P(#)(Q) is defined as
WLr@) () = {u € L@ (Q): |Vul € L”(z)(Q)}

with the norm
HUHWlm(w)(Q) = [ulp(z) + |Vlp)-

Denote by VV1 p(w)(Q) the closure of C§°(2) in WP(®)(Q) under the norm
[ull = [Vulpa)-
Proposition 2.3 ([11]).
(1) The spaces LP®)(Q), WHP@)(Q) and Wol’p(x)(Q) are separable and reflexive Banach spaces.

(2) There is a constant C > 0 such that

[u|p(z) < Cllul|l for all u € Wol"p(x)(Q).

(3) If g € C+(Q) and q(z) < p*(z) (q(x) < p*(z)) for x € Q, then there is a continuous (compact)
embedding Wo ™ (Q) — LI@)(Q).
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Proposition 2.4 ([12]). The functional I : Wol’p(w)(Q) — R defined by

W= [ vulr® de
I(u) !p(x>|V| d

is continuously Fréchet differentiable and I'(u) = —Apyu for all u € Wol’p(x)(ﬂ), and we have:
) I is a convex functional.

(1
(2) I': ’p(m) Q) — (Wol’p(m)(Q))* is a bounded homeomorphism and a strictly monotone operator.
(3) 1" is a mapping of type (S).

(4

) I is weakly lower semi-continuous.

From now on, we denote by ¥ = WOI’I’(I)(Q)7 Y* = (Wol’p(m)(Q))* the dual space and by (-, -), the
dual pair. Notice that problem (1.1) has a variational structure, in fact, its solutions can be searched
as critical points of the energy functional J : Y — R given by

where

(/p(lx V@) dx) and ¥ (u) = /G(aj,u) i
Q

Q
Then we have the following

Proposition 2.5 ([8, Proposition 3.1]). If the assumptions (M1) and (g1) hold, then the following
statements are true:

(1) M € C([0,+00]) N C(J0, +o0[), M(0) = 0, M'(t) = M(t) for any t > 0 and M is strictly
increasing on [0, 4+00] .

(2) J,¢,0 € CO(Y), J(0) = $(0) = ¥(0) = 0, ¢ € CH(Y \{0}), v € CH(Y), J € CH(Y \ {0}). For
everyu € Y\ {0} andv €Y,
(J'(u),v) = M(/p(lx) | V[P dx) /|Vu\p(”’)_2Vqu dx — /g(x,u)vdx
Q Q Q

holds. Thus u € Y \ {0} is a weak solution of (1.1) if and only if w is a nontrivial critical point
of J.

(3) The functionals ¢, J :' Y — R are sequentially weakly lower semi-continuous.

(4) The mapping ' 'Y — Y™ is sequentially weakly-strongly continuous. For any open set K C
Y\ {0} with K C Y \ {0}, the mappings ¢',J : K — Y™ are bounded, and are of type (S4).

Next, we give the definition of the Cerami condition, which was introduced by G. Cerami in [5].

Definition 2.1. Let (X, || - ||) be a real Banach space, J € C*(X,R). Given ¢ € R, we say that J
satisfies the Cerami ¢ condition (we denote (C.)-condition) if:

(C1) any bounded sequence (u,) C X such that J(u,) — ¢ and J'(u,) — 0 has a convergent
subsequence;

(C2) there exist the constants a,r, 5 > 0 such that
1 (@)|[[[ull > B8, YueJ ([c—a,c+a]) with |lul >r.

If J the (C.)-condition is satisfied for every ¢ € R, we say that J satisfies the (C')-condition.
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Remark 2.1. It is clear from the above definition that if J satisfies the (P.S)-condition, then it satisfies
the (C)-condition. However, there are the functionals that satisfy the (C')-condition but do not satisfy
the (PS)-condition (see [5]). Consequently, the (C')-condition is weaker than the (P.S)-condition.

Now, we present the following theorems which will play a fundamental role in the proof of the
main theorems. First of all, let us recall the Mountain Pass Theorem which we use in the proof of
Theorem 1.1.

Theorem 2.1 ([4]). Let X be a real Banach space and let J : X — R be a functional of class C*(X,R)
that satisfies the (C)-condition, J(0) = 0, and the following conditions hold:

(1) There exist positive constants p and o such that J(u) > « for any u € X with |lul| = p.
(2) There exists a function e € X such that |le|| > p and J(e) < 0.

Then the functional J has a critical value ¢ > o, that is, there exists uw € X such that J(u) = ¢ and
J'(u) =0 in X*.

To prove Theorem 1.2, we apply the Fountain theorem [20].
Let X be areal, separable and reflexive Banach space. It is known [21] that there exist {e;};en C X
and {e}}jen C X* such that

X =span{e;: j=1,2,...}, X" =spanfe;: j=1,2,...},

and (ef,e;) =1if i =j, (e, e;) =01if i # j.
We denote

k “+o0
X; = span{e;}, Y, = @Xj and Zj = @Xj.
j=1 j=k

Theorem 2.2. Assume that X is a Banach space and let J : X — R be an even functional of class
CY(X,R) satisfying the (C)-condition. For every k € N, there exists pp > 1 > 0 such that:

(A1) bp:==inf{J(u): u€ Zy, ||u| =r} = +o0 as k — +o0;

(A2) ap :==max{J(u): ue Yy, |ul| =pr} <O0.

Then J has a sequence of critical values tending to +oc.

3 Proofs of main results
First of all, we begin by showing that the (C.)-condition holds.

Lemma 3.1. Under the assumptions (My), (M1), (g1), (93) and (g4), J satisfies the (C.)-condition
with ¢ # 0.

Proof. Tt is first proved that J satisfies the first assertion of the (C.)-condition. Let (u,) C Y be
bounded such that J(u,) — ¢, ¢ € R* and J'(u,) — 0. Since J(0) = 0 and J(u,) — ¢ # 0, there
exists € > 0 sufficiently small such that for n large enough, ||u,| > €.

Denote K = {u € Y : |lu|]| > ¢}, then u, € K for n large enough. As (u,) is bounded in Y,
then up to a subsequence, still denoted by (uy,), we obtain u,, € K and u, — u. Using the fact that
J' (upn) — 0, we have J'(uy,)(up, —u) — 0. Since J' : K — Y* is of type (S ) in view of Proposition 2.5,
we obtain u, — u € K.

Now, check that J satisfies the second assertion of the (C,)-condition. Arguing by contradiction,
let us suppose that there exist ¢ € R* and (u,) C Y satisfying

J(un) = ¢, |Jun| — +oo and || J'(un)]| |lun| — O.
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Let v, = then ||v,|| = 1. Up to a subsequence, for v € Y, we may assume that

Up
lunll
v, =0 inY,

v, — v in LY@ (Q),
vp(x) = v(z) ae x €l

Let wg = {x € : v(x) # 0}. Then, for x € wy, we have

Un()

G vnl@) = lim o = (@) # 0.
This means that
[un (2)] = Jop(2)|||un|| = 400 a.e. inwy as n — 4o0.

Hence, by (g3), it follows that for each x € wy, we obtain

Gl un(@)) fun(@)|" . Gl un(2))

wFoe Tun @ TP~ 1o g ()

Also, from (g3), we can find ¢; > 0 such that

G(z,t)
|t|ﬁp+

>1, Yz eQ, |t >t.

Since G(z, -) is continuous on [—t1, 1], there exists a positive constant ¢4 such that
|G(z,t)| < ey, V(x,t) € QX [—t1,t1].
Then, by (3.2) and (3.3) , we deduce that there is a constant ¢; € R such that
G(z,t) > c5, V(z,t) € QxR

From this we conclude that

G@,un) =05 oo ypcq vneN,
[Jun |27
which implies that
G(m un( ) 18P cs

Choosing ||u,|| > 1 for a sufficiently large n, in view of (M), we have

p(z)
[ /Gm ) dz + on(1),

c=J(uy) +o,(1) = ﬁ(/l |V, |P®) dm) —/G(x7un)dx+on(1)
Q

(p+ )®
which implies that

my
G(x,up) dx > un||®? —c+o0,(1) = 400 as n — 400,
[ o> B ) 0

where and in what follows, o, (1) denotes a quantity which tends to zero as n — +oo.

s
[on ()| = +o0.



p(z)-Kirchhoff Type Problems Without (AR)-Condition 67

Similarly, using (M), it follows that

p(x)

|| PP —/G(x,un)dx+on(1).
Q

- J(un)+on(1)z\7</1|vunp<z> dx) f/G(:c,un)deron(l)
Q Q

ma
= B(p~)»

Then, from this and (3.5), we conclude that

||un||ﬁp+ > Blo)” c+ B(Z_)B /G(m,un) dr —o,(1) > 0. (3.6)

ma

Hence |wg| = 0. Indeed, arguing by contradiction, if |wg| # 0, then, by (3.1), (3.4), (3.6) and Fatou’s

Lemma, we have
G(z, un(x)) Bp
e / T [ A T Tl

B . G(x,up(z)) apt cs
‘/ nli‘%o(unmw* o @)™ = e ) 4

wo
.. G(x,up(z)) ap+ cs
<t | (e o'~ e )
wo
.. G(z,un(x)) ap+ cs
<t | (ww O o )
.. 33 Un + . Cs
00 / fan( |Bp+ vn(@)]" d — lim sup [un )P &
Q
o G(@, un(z
- lifgloréf i Hﬁp+
< liminf / G, un(@)) da. (3.7)
n—reo 5(p+ Blp+)P fG T, Up (7)) do — o (1)
From (3.5) and (3.7), we obtain
+)8
oo < P
mo
which is a contradiction. Therefore, |wo| = 0 and v(z) =0 a.e. z € Q.
Motivated by [13], we can define a sequence (t,) C R such that
J(tpuy) = max J(tuy,). (3.8)
t€[0,1]
It is clear that t,, > 0 and J(t,uyn) > ¢ > 0= J(0) = J(0,u,).
If ¢, < 1, then using & J(tu,)|—¢, = 0, we obtain
(I (tnun), tpun ) = 0. (3.9)
If ¢, = 1, then
(J (un), un) = on(1). (3.10)

Therefore, by (3.9) and (3.10), we always have

(T (bntin), ntin) = 0 (1).
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On the one hand, using the conditions (g4), (Mp) and Proposition 2.5, for all ¢ € [0, 1], we have

Bp—'rt](tun) < ﬁp+J(tnun) = ﬂp+J(tnun) - <J/(tnun);tnun> + On(l)

= Bp* <z\7( Q/ ﬁ |Vttt [P das) - Q/ G(x,un)dx>

1 . -
— (/( |thun|p(”“) dac) /|thun|p("L) dm—i—/g(w,tnun)tnun dx + o, (1)
p(z)
Q
M(

Q

1 1
= Bp* /p) |Vt 0 [P da:) - </p($) |Vt |PE) dz) /|thun|p(‘r) dz
Q Q Q

+ /g(x, tpuy) de + o, (1)
Q

1 1
< BptM /— |V, |P@ de ) — M /— |V [P da: /|Vun\p(‘"”) dx
J p@) ) p() )

—|—/ x,up) + Cp) dx + o, (1)
Q
< Bpt I (un) — (J (un), un) + Co|Q — Bpte+ ColQ| as n — +oo.  (3.11)

Let (rg)ren be a positive sequence of real numbers such that rp > 1 for any k and ry — 400 as
k — 4o00. Then it is clear that
lrvn|l =7k > 1, Vk,neN.

On the other hand, since v, — 0 in L7 (Q) and v,(z) — 0 a.e. 2 € Q as n — +oo, using the
condition (g1) and the Lebesgue dominated convergence theorem, we deduce for a fixed k € N that

/G(x,rkvn) dx — 0 as n — +o0. (3.12)
Q

Since |Jun|| — 400 as n — 400, we have ||u,|| > 7, which implies T €10, 1] for n large enough.
Thus from (3.8) and (3.12), we deduce for a fixed k € N that

J(tnup) > J(HZ—ZH un) = J(rpv,) > % P /G(x,rkvn) dx > 20{2%)& re? (3.13)
for any n large enough.
From (3.13), letting n, k — 400, we obtain
J(tnuy) = 400 as n — +oo. (3.14)
Combining (3.11) and (3.14) gives a contradiction. This completes the proof of Lemma 3.1. O

Proof of Theorem 1.1. By Lemma 3.1, J satisfies the (C.)-condition in Y with ¢ # 0. To apply
Theorem 2.1, with X =Y, we will show that J has a mountain pass geometry.
First, we affirm that there exists p, v > 0 such that

Ju)Zv, YueY with [Ju|| = p. (3.15)

In fact, since apt < v~ < y(z) < p*(x) for all # € Q, we have from Proposition 2.3 that Y < LP" (Q)
with a continuous and compact embeddings. So, there exists cg such that

[ulap+ < collull, YueY.
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Let € > 0 such that 6cg‘p+ < 5atyys - Using (g1) and (g2), it follows that

Gla,t) < elt|?” + CEe)t™, V(x,t) € 2 xR.

Therefore, in view of (M7) and (3.15), for ||u|| sufficiently small, we get

1 «
J(u) > % (/ @) |Vl dﬂ?) - E/ lu|*?" dz — C(e)/|u|7(z) dx
Q Q Q

mi
~a(pt)e

Jull*>” = el = (o) [ 1uP® da.
Q

Since Y < L7®)(Q) (because v(z) < p*(z)), there exists ¢; > 0 such that

luly(@) < erllull.

Thus
my
J(u) =
w) a(pt)®

+ + + - —
[ull*?" —ecg® [[ul*" = Ce)er [lull”

+ mi + - ~—apt
> " (ot — =i~ CEF Jul” ")
ap™ Mmoo Y |yl —ept
> [l (55w ~ CEOF =",
Since v~ > ap™, the function
mo o v’—axﬁ)
t— (2a(p+)°‘ Cle)er t

is strictly positive in a neighborhood of zero. Then there exists p,v > 0 such that
Ju) = v, YueY with ||ul| = u.

Next, we affirm that there exists e € Y with |lul| > p such that J(e) < 0. In fact, from (g3) it follows
that for all T' > 0, there exists a constant M7 > 0, depending on T, such that

F(z,t) > Tt ae. z€Q, V|t > Mr.
Since G(z, -) is continuous on [—Mry, M7], there exists a positive constant cg such that
|G(:17,t)| < cs, V(az,s) €N x [7MT,TT].

Then .
G(z,t) > TP —cg, ae. z€Q, YteR.

Hence, for w € Y \ {0}, ||w]| = 1 and ¢ > 1 large enough, we obtain

B
J(tw) < /3(7;3)[3 tﬁf(/ [V [P®) dw) _T/ 1P W™ do o+ cs[0)
Q

M2 ppt _ BT Bpt M2 ppt _ BTy, 80T
Sﬁ(p*)ﬂt Tt w dx+0§ﬁ(p*)5t TP wlyy +C
Q
_ m2 Br™\ BT
_ (5@*)5 T|w|Bp+)t i)
AS meo +
Foryr ~ Tl <0

for T' > 0 large enough, we deduce

J(tw) = —oco as t — 4o0.

Thus there exists tg > 1 and e = tow € X \ B,(0) such that J(e) < 0. O
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Proof of Theorem 1.2. We check that J satisfies the assumptions of fountain Theorem 2.2. In view
of Lemma 3.1, J satisfies the (C.)-condition with ¢ # 0. By condition (gs5), we see that J is an even
functional. Then, to apply Theorem 2.2, it suffices to show that if k is large enough, then there exist
pr > 1, > 0 such that:

(A1) b :=inf{J(u) : w € Z, |Ju|| =rr} — +o0 as k — +o0.
(A2) a :=max{J(u): u €Yy, |lul| =pr} <O0.
We first give the following lemmas that will be used later.
Lemma 3.2. If a € C1(Q), a(z) < p*(z) for all z € Q, and we denote
Qj, = sup {|u|a(z) s ull=1, ue Zk},

then lim o« = 0.
k—+oo

Proof. Suppose by contradiction that there exist ¢ > 0,k; > 0 and (uy) C Zj such that
Jurll =1 and [Jula@) =€

for every k > ky. Since (uy) is bounded in Y, there exists v € ¥ such that

g uw inY and (ef,u) = lim (e, up) =0

k— o0 k—o00

fore=1,2....
Thus u = 0. However, we obtain

< Il = =0
e< lim [uk]a(z) = [Ula@) =0,

which is a contradiction. O

Lemma 3.3. For every v € C(Q) and u € L")(Q), there is ¢ € Q such that

y(x) _ (<)
/|u| dz = [u]9).

Q

(A1) Let u € Zj, such that ||u|| =, > 1. It follows from the assumptions (M1), (g1) and Lemma 3.3

that
—~ 1
M /— Vup(w)dx> —/G x,u)dx
(Q o) J el

1 [e3%
S M ( / — V@ d:v) _ / Jul"® dz — e, / [ul dx
« p(z)
Q @ “

J(u)

mi -
> W Ju|*? — 01|U|18 —¢s||lufl, where ¢ € Q
mi - .
o) [ul " —c1 —esllull if July@) <1
Z m + +
1 - .
o) [l —cia) [ul” —csllull if |uly@) >1
mi — + +
> P [ull " —cra [Jul|" = esllull — e
( 1 1 ) ap~
= mi 7—77’]6 — C5T — Cq.
a(pt)* o F
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Choose
A Ao
T = (CW al m] )aP -t

Since v© > a(p*)® and oy — 0 as k — oo, we assert that 7, — +00 as ktooco. Consequently,

J(u) = 400 as |lul]| = +oo with u € Z,

which implies (A;).

(Az) Since Y} is finite-dimensional, all norms are equivalent. So, there exists a constant Ry > 0 such
that for all u € Yy, with [Ju|| > 1, we have

p(z) ’ m2 pp* pp*
ot < 7 ([ 1vup@ar) < ' < R (3.16)
Q

mo

Bp~)* Bp~)* g

Next, the assumption (g3) implies that exists C > 0 such that for |s| > Cj, we have
G(z,s) > 2Rk|s|'3p+.

Then, for all (z,t) € Q x R, we get

G(z,t) > 2Ry|s|?*" — Ty, (3.17)

where T, = max G(z, s).
[s|<Ck

Combining (3.16) and (3.17), for u € Y}, such that ||u|| = pr > 7%, we conclude that

+ m
T = () = [ Glau)de < ~Rufullfl + Tuj0 <~ ulp” + Ty
Q
Therefore, for py large enough (pr > ry), from the above we get
= <0.
w LA, T =0
The assertion (Az) holds. This completes the proof of Theorem 1.2. O
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