Mahmoud El Ahmadi, Abdesslem Ayoujil, Mohammed Berrajaa
abstract:
In this paper, we study the following $p(x)$-Kirchhoff problem
$$ \begin{cases}
-M \bigg( \int\limits_{\Omega} \frac{1}{p(x)}\,|\nabla u|^{p(x)}\,dx\bigg)
\Delta _{p(x)} u= g(x,u) & \text{in}\;\Omega,\\
u=0 & \text{on}\;\partial \Omega,
\end{cases} $$
where $ M : \mathbb{R}_+ \to \mathbb{R}_+$ is a continuous function and the
nonlinear term $g:\Omega \times \mathbb{R} \to \mathbb{R}$ satisfies the Carathéodory
condition. Using the mountain pass theorem with the Cerami condition, we give a
result on the existence of at least one nontrivial solution without assuming the
$\mathbf{(AR)}$-condition. Next, Employing the fountain theorem, we show the
existence of infinitely many solutions of the above problem.
Mathematics Subject Classification: 35A01, 35A15, 35B38, 35J60
Key words and phrases: $p(x)$-Kirchhoff type problems, variational methods, generalized Sobolev spaces, critical point theory, Cerami condition