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Abstract. In this paper, we investigate a satellite system in viscoelasticity with a double flexible
panel and external disturbances. The existence of at least one classical solution is proved under a
minimal assumption on the relaxation function. Besides, we established the existence of at least two
non-negative classical solutions with dynamic boundary conditions. To analyze the results obtained in
different ways, various methods are used, including new iterative approaches with certain topological
properties.
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1 Introduction
Thinking about mathematical models of the spacecraft as a field of modern technology began in the
late of the last century. However, the large-scale implementation of these systems was hampered by the
insufficient level of development of computer technology. Only in the mid-1950s this field of knowledge
began rapidly growth, due to the rapid pace of development of the computer industry. One of the main
tasks solved by means of a satellite system is the search and analysis of connections of geographically
distributed objects with the help of components inside them, which help them to accomplish all the
tasks allotted to them, being in totally different orbits and helping us in various ways on the Earth.
Recently, there has been an increasingly noticeable trend towards the transition from quantitative
data presentation formats to qualitative ones, when spatial relationships between objects are defined
explicitly. Most database management system developers offer tools for working with spatial data
which need theoretical studies for systems with the presence of deferred mathematical terms. It is
well known fact that a satellite system stays in orbit because of the balance between gravitation
pull and centrifugal force. This is from the quantitative point of view, where the angular velocity is
determined by the force balance equation, which balances the gravitational and centrifugal forces. In
this direction, let us consider a mathematical model of a flexible satellite system based on an internal
nonlinear disturbance.

For x ∈ [0, l], l > 0 represents the position and t ≥ 0 is the time, let y = y(x, t), z = z(x, t) be
the transverse displacements of the left and right panels of a flexible satellite system in viscoelasticity
introduced by the following problem:

ρAytt + EIyxxxx − EI

t∫
0

ζ(t− s)yxxxx(s, x) ds = f1(x, t), x ∈
[
0,

l

2

]
,

ρAztt + EIzxxxx − EI

t∫
0

ζ(t− s)zxxxx(s, x) ds = f2(x, t), x ∈
[ l
2
, l
]
,

(1.1)

subject to the dynamic boundary conditions

yx

(
x =

l

2
, t
)
= zx

(
x =

l

2
, t
)
= 0,

yxx(x = 0, t) = zxx(x = l, t) = 0,

yxxx(x = 0, t) = zxxx(x = l, t) = 0,

y
(
x =

l

2
, t
)
= z

(
x =

l

2
, t
)
= w

(
x =

l

2
, t
)
,

mwtt

(
x =

l

2
, t
)
= η(t) + EIyxxx

(
x =

l

2
, t
)
− EI

t∫
0

ζ(t− s)yxxx

(
x =

l

2
, s
)
ds

−EIzxxx

(
x =

l

2
, t
)
+ EI

t∫
0

ζ(t− s)zxxx

(
x =

l

2
, s
)
ds+ d

(
x =

l

2
, t
)
, t ≥ 0,

(1.2)

and the initial conditions

y(x, t = 0) = y0(x), yt(x, t = 0) = y1(x), x ∈
[
0,

l

2

]
,

z(x, t = 0) = z0(x), zt(x, t = 0) = z1(x), x ∈
[ l
2
, l
]
.

(1.3)

Here ρ, A, EI, m are the non-negative constants.

(H1) Let B be a fixed non-negative constant. The sources f1, f2 and the external disturbance d are
of C([0,∞)× [0, l]), where

|f1|, |f2|, |d| ≤ B on [0,∞)× [0, l],
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and the relaxation function ζ ∈ C([0,∞)) is defined to satisfy
t∫

0

|ζ(t− s)| ds ≤ B, t ∈ [0,∞).

The functionals
y0, y1, z0, z1 ∈ C([0, l])

and
|y0|, |y1|, |z0|, |z1| ≤ B on [0, l].

Here, η is unknown and will be defined later.

Each equation of (1.1) is a viscoelastic Euler–Bernoulli beam, while the coupled system is connected
to a central body (see [2,15]). As in [6], we apply a control force at the center body of the system given
by a function η(t). It is shown that using the Galerkin approximation method, the well-posedness is
guaranteed, and then the stability for solution is obtained. The results in [11] extend those in [7] from
a qualitative point of view, where the well-posedness of the solution is treated using the semi-group
approach and then an exponential decay rate is obtained. In [8], a vibration control for a flexible
satellite subject to input constraint and external disturbance d(t) is considered and the vibration of
the satellite is regulated by a control law design (for more detail, see [9, 10]).

Viscoelastic materials have variable characteristics depending on the time and state of memory,
making the physical phenomenon dissipative. The use of a viscoelastic term in new evolution math-
ematical models is becoming increasingly widespread due to the advantages it has over qualitative
information for materials. Its effects are clear in the behavior of the solutions and in the rate of growth
during evolution. For viscoelastic problems, we mention the results in [6], where a flexible viscoelastic
satellite is studied. Under certain conditions on the relaxation function, the author established a
stability results for the system.

Motivated by the above results, we investigate system (1.1)–(1.3) and obtain a new result regarding
the existence of classical solutions.

This paper is structured as follows. In Section 2, we state some auxiliary results and useful tools.
In Section 3, we demonstrate the existence of at least one classical solution for the problem (1.1)–
(1.3). Besides, in Section 4, we prove the existence of at least two non-negative classical solutions. In
Section 5, we give an illustrative example of the obtained results.

2 Preliminary results
Let X be a real Banach space. We recall the definitions of compact and completely continuous
mappings in Banach spaces.

Definition 2.1. Let K : M ⊂ X → X be a map. We say that K is compact if K(M) is contained in
a compact subset of X . The map K is said to be completely continuous if it is continuous and maps
any bounded set to a relatively compact set.

Proposition 2.1 ([1]). Let C ⊂ E be a closed, convex subset, 0 ∈ U ⊂ C, where U is an open set. Let
f : K → C be a compact and continuous map. Then:

(a) either f has a fixed point in K,

(b) or there exist x ∈ ∂K and β ∈ (0, 1) such that x = βf(x).

We will use the next iterative method which is a consequence of Proposition 2.1.

Theorem 2.1. Let E be a Banach space, Y be a closed convex subset of E, and let K be any open
subset of Y with 0 ∈ U . Consider two operators T and S,

Tx = εx, x ∈ K,

for ε > 0 and S : K → E, such that
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(i) the operator I − S : K → Y, is continuous, compact,

(ii) in addition, {
x ∈ K : x = β(I − S)x, x ∈ ∂K

}
= ∅, ∀β ∈

(
0,

1

ε

)
.

Then there exists x∗ ∈ K such that
Tx∗ + Sx∗ = x∗.

Proof. We find that the operator
1

ε
(I − S) : K → Y

is continuous and compact. Suppose that there exist x0 ∈ ∂K and µ0 ∈ (0, 1) such that

x0 = µ0
1

ε
(I − S)x0,

that is,
x0 = β0 (I − S)x0,

where
β0 = µ0

1

ε
∈
(
0,

1

ε

)
.

This contradicts condition (ii). From the Leray–Schauder nonlinear alternative, it follows that there
exists x∗ ∈ K such that

x∗ =
1

ε
(I − S)x∗,

or
εx∗ + Sx∗ = x∗,

or
Tx∗ + Sx∗ = x∗.

The proof of Theorem 2.1 is now completed.

Definition 2.2. A map K : X → Y is said expansive if there exists a positive constant a > 1 such
that

∥Ku−Kv∥Y ≥ a∥u− v∥X , ∀u, v ∈ X ,

where X , Y are the real Banach spaces.
Now, we recall the definition for a cone in a Banach space.

Definition 2.3. A closed, convex set P in X is called a cone if
1. λx ∈ P , ∀λ ≥ 0 and for any x ∈ P ,

2. x,−x ∈ P =⇒ x = 0.
Let P∗ = P\{0}.

Theorem 2.2 ([3,13]). Let P be a cone of a Banach space E, 𝟋 be a subset of P and let K1, K2 and
K3 be three open bounded subsets of P such that

K1 ⊂ K2 ⊂ K3

and 0 ∈ K1. Let T : 𝟋 → P be an expansive mapping and S : K3 → E be a completely continuous
mapping and

S(K3) ⊂ (I − T )(𝟋).

Assume that

(K2 \ K1) ∩𝟋 ̸= ∅,

(K3 \ K2) ∩𝟋 ̸= ∅,

and there exists u0 ∈ P∗ such that
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(i) Sx ̸= (I − T )(x− βu0), ∀β > 0, x ∈ ∂K1 ∩ (𝟋+ βu0),

(ii) ∃ ϵ ≥ 0 such that Sx ̸= (I − T )(βx) ∀β ≥ 1 + ϵ, x ∈ ∂K2, βx ∈ 𝟋,

(iii) Sx ̸= (I − T )(x− βu0), ∀β > 0, x ∈ ∂K3 ∩ (𝟋+ βu0).

Then T + S has at least two non-zero fixed points x1, x2 ∈ P such that

x1 ∈ ∂K2 ∩𝟋 and x2 ∈ (K3 \ K2) ∩𝟋,

or
x1 ∈ (K2 \ K1) ∩𝟋 and x2 ∈ (K3 \ K2) ∩𝟋.

3 Existence of at least one solution
Assume that the space C2([0,∞), C4([0, l])) is defined with

∥y∥1 = max
{

sup
t≥0, x∈[0,l]

|y|, sup
t≥0, x∈[0,l]

|yt|, sup
t≥0, x∈[0,l]

|ytt|,

sup
t≥0, x∈[0,l]

|yx|, sup
t≥0, x∈[0,l]

|yxx|, sup
t≥0, x∈[0,l]

|yxxx|, sup
t≥0, x∈[0,l]

|yxxxx|
}
,

provided it exists. Define
X =

(
C2([0,∞), C4([0, l]))

)15
with

∥y∥ = max
j∈{1,...,15}

∥yj∥1, y = (y1, . . . , y15),

provided it exists. For
y ∈ X , y = (y1, . . . , y15),

introduce the operators

S11(y) = ρAy1tt + EIy1xxxx − EI

t∫
0

ζ(t− s)y1xxxx(s, x) ds− f1,

S12(y) = ρAy2tt + EIy2xxxx − EI

t∫
0

ζ(t− s)y2xxxx(s, x) ds− f2,

S13(y) = y1

(
x =

l

2
, t
)
,

S14(y) = y2x

(
x =

l

2
, t
)
,

S15(y) = y1xx(x = 0, t),

S16(y) = y2xx(x = l, t),

S17(y) = y1xxx(x = 0, t),

S18(y) = y2xxx(x = l, t),

S19(y) = y1

(
x =

l

2
, t
)
− y2

(
x =

l

2
, t
)
,

S110(y) = y1

(
x =

l

2
, t
)
− y3

(
x =

l

2
, t
)
,

S111(y)(t, x) = my3tt

(
x =

l

2
, t
)
− y4(t)− EIy1xxx

(
x =

l

2
, t
)
+ EI

t∫
0

ζ(t− s)y1xxx

(
x =

l

2
, s
)
ds
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+ EIy2xxx

(
x =

l

2
, t
)
− EI

t∫
0

ζ(t− s)y2xxx

(
x =

l

2
, s
)
ds− d

(
x =

l

2
, t
)
,

S112(y) = y1(x, t = 0)− y0(x),

S113(y) = y1t − y1(x),

S114(y) = y2(x, t = 0)− z0(x),

S115(y) = y2t(x, t = 0)− z1(x),

S1(y) =
(
S111(y), . . . , S115(y)

)
, t ≥ 0, x ∈ [0, l].

Note that if y ∈ X is such that
S1(y) = 0, t ≥ 0, x ∈ [0, l],

then y = y1, z = y2, w = y3 and η = y4 solve problem (1.1)–(1.3). Set

B1 = max
{
2B, (ρA+ EI + 1 + B)B, B(m+ 2 + 2EI + 2EIB)

}
.

Lemma 3.1. Let (H1) hold. For y ∈ X and ∥y∥ ≤ B, we have

|S1j(y)| ≤ B1, t ≥ 0, x ∈ [0, l], j ∈ {1, . . . , 15}.

Proof. We have

|S11(y)| =
∣∣∣∣ρAy1tt + EIy1xxxx − EI

t∫
0

ζ(t− s)y1xxxx(s, x) ds− f1

∣∣∣∣
≤ ρA|y1tt|+ EI|y1xxxx|+ EI

t∫
0

|ζ(t− s)| |y1xxxx(s, x)| ds+ |f1|

≤ ρAB + EIB + B2 + B ≤ B1, t ≥ 0, x ∈ [0, l],

and

|S12(y)| =
∣∣∣∣ρAy2tt + EIy2xxxx − EI

t∫
0

ζ(t− s)y2xxxx(s, x) ds− f1

∣∣∣∣
≤ ρA|y2tt|+ EI|y2xxxx|+ EI

t∫
0

|ζ(t− s)| |y2xxxx(s, x)| ds+ |f1|

≤ ρAB + EIB + B2 + B ≤ B1, t ≥ 0, x ∈ [0, l],

and

|S13(y)| =
∣∣∣y1(x =

l

2
, t
)∣∣∣ ≤ B1,

|S14(y)| =
∣∣∣y2x(x =

l

2
, t
)∣∣∣ ≤ B1,

|S15(y)| = |y1xx(x = 0, t)| ≤ B1,

|S16(y)| = |y2xx(x = l, t)| ≤ B1,

|S17(y)| = |y1xxx(x = 0, t)| ≤ B1,

|S18(y)| = |y2xxx(x = l, t)| ≤ B1, t ≥ 0, x ∈ [0, l],

and
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|S19(y)| =
∣∣∣y1(x =

l

2
, t
)
− y2

(
x =

l

2
, t
)∣∣∣

≤
∣∣∣y1(x =

l

2
, t
)∣∣∣+ ∣∣∣y2(x =

l

2
, t
)∣∣∣ ≤ 2B ≤ B1, t ≥ 0, x ∈ [0, l],

and

|S110(y)| =
∣∣∣y1(x =

l

2
, t
)
− y3

(
x =

l

2
, t
)∣∣∣

≤
∣∣∣y1(x =

l

2
, t
)∣∣∣+ ∣∣∣y3(x =

l

2
, t
)∣∣∣ ≤ 2B ≤ B1, t ≥ 0, x ∈ [0, l],

and

|S111(y)| =
∣∣∣∣my3tt

(
x =

l

2
, t
)
− η(t)− EIy1xxx

(
x =

l

2
, t
)

+ EI

t∫
0

ζ(t− s)y1xxx

(
x =

l

2
, s
)
ds+ EIy2xxx

(
x =

l

2
, t
)

− EI

t∫
0

ζ(t− s)y2xxx

(
x =

l

2
, s
)
ds− d

(
x =

l

2
, t
)∣∣∣∣

≤ m
∣∣∣y3tt(x =

l

2
, t
)∣∣∣+ |η(t)|+ EI

∣∣∣y1xxx(x =
l

2
, t
)∣∣∣

+ EI

t∫
0

|ζ(t− s)|
∣∣∣y1xxx(x =

l

2
, s
)∣∣∣ ds+ EI

∣∣∣y2xxx(x =
l

2
, t
)∣∣∣

+ EI

t∫
0

|ζ(t− s)|
∣∣∣y2xxx(x =

l

2
, s
)∣∣∣ ds+ ∣∣∣d(x =

l

2
, t
)∣∣∣

≤ B(m+ 2 + EI + EIB)
≤ B1, t ≥ 0, x ∈ [0, l],

and

|S112(y)| = |y1(x, t = 0)− y0(x)| ≤ |y1(x, t = 0)|+ |y0(x)| ≤ 2B ≤ B1, t ≥ 0, x ∈ [0, l],

and
|S113(y)| = |y1t − y1(x)| ≤ |y1t|+ |y1(x)| ≤ 2B ≤ B1, t ≥ 0, x ∈ [0, l],

and

|S114(y)| = |y2(x, t = 0)− z0(x)| ≤ |y2(x, t = 0)|+ |z0(x)| ≤ 2B ≤ B1, t ≥ 0, x ∈ [0, l],

and

|S115(y)| = |y2t(x, t = 0)− z1(x)| ≤ |y2t(x, t = 0)|+ |z1(x)| ≤ 2B ≤ B1, t ≥ 0, x ∈ [0, l].

This completes the proof of Lemma 3.1.

(H2) Assume that ∃ g ∈ C([0,∞)) such that g > 0 on (0,∞), where

g(0) = 0,

and ∃A1 > 0 so that

24(1 + l + l2 + l3 + l4 + l5)(1 + t+ t2)

t∫
0

g(s) ds ≤ A1, t ≥ 0.
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For y ∈ X , let us introduce

S2(y) =

t∫
0

x∫
0

(t− s)2(x− τ)4g(s)S1(y)(s, τ) dτ ds, t ≥ 0, x ∈ [0, l]. (3.1)

Lemma 3.2. Let (H1) and (H2) hold. If y ∈ X and ∥y∥ ≤ B, then

∥S2y∥ ≤ A1B1.

Proof. For any j ∈ {1, . . . , 15}, we get

|S2j(y)| =
∣∣∣∣

t∫
0

x∫
0

(t− s)2(x− τ)4g(s)S1j(y)(s, τ) dτ ds

∣∣∣∣
≤

t∫
0

x∫
0

(t− s)2(x− τ)4g(s)|S1j(y)(s, τ)| dτ ds ≤ B1l
5t2

t∫
0

g(s) ds

≤ 24B1(1 + l + l2 + l3 + l4 + l5)(1 + t+ t2)

t∫
0

g(s) ds ≤ A1B1, t ≥ 0, x ∈ [0, l],

and

|S2jt(y)| =
∣∣∣∣2

t∫
0

x∫
0

(t− s)(x− τ)4g(s)S1j(y)(s, τ) dτ ds

∣∣∣∣
≤ 2

t∫
0

x∫
0

(t− s)(x− τ)4g(s)|S1j(y)(s, τ)| dτ ds ≤ 2B1l
5t

t∫
0

g(s) ds

≤ 24B1(1 + l + l2 + l3 + l4 + l5)(1 + t+ t2)

t∫
0

g(s) ds ≤ A1B1, t ≥ 0, x ∈ [0, l],

and

|S2jtt(y)| =
∣∣∣∣2

t∫
0

x∫
0

(x− τ)4g(s)S1j(y)(s, τ) dτ ds

∣∣∣∣
≤ 2

t∫
0

x∫
0

(x− τ)4g(s)|S1j(y)(s, τ)| dτ ds ≤ 2B1l
5

t∫
0

g(s) ds

≤ 24B1(1 + l + l2 + l3 + l4 + l5)(1 + t+ t2)

t∫
0

g(s) ds ≤ A1B1, t ≥ 0, x ∈ [0, l],

and

|S2jx(y)| =
∣∣∣∣4

t∫
0

x∫
0

(t− s)2(x− τ)3g(s)S1j(y)(s, τ) dτ ds

∣∣∣∣
≤ 4

t∫
0

x∫
0

(t− s)2(x− τ)3g(s)|S1j(y)(s, τ)| dτ ds ≤ 4B1l
4t2

t∫
0

g(s) ds
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≤ 24B1(1 + l + l2 + l3 + l4 + l5)(1 + t+ t2)

t∫
0

g(s) ds ≤ A1B1, t ≥ 0, x ∈ [0, l],

and

|S2jxx(y)| =
∣∣∣∣12

t∫
0

x∫
0

(t− s)2(x− τ)2g(s)S1j(y)(s, τ) dτ ds

∣∣∣∣
≤ 12

t∫
0

x∫
0

(t− s)2(x− τ)2g(s)|S1j(y)(s, τ)| dτ ds ≤ 12B1l
3t2

t∫
0

g(s) ds

≤ 24B1(1 + l + l2 + l3 + l4 + l5)(1 + t+ t2)

t∫
0

g(s) ds ≤ A1B1, t ≥ 0, x ∈ [0, l],

and

|S2jxxx(y)| =
∣∣∣∣24

t∫
0

x∫
0

(t− s)2(x− τ)g(s)S1j(y)(s, τ) dτ ds

∣∣∣∣
≤ 24

t∫
0

x∫
0

(t− s)2(x− τ)g(s)|S1j(y)(s, τ)| dτ ds ≤ 24B1l
2t2

t∫
0

g(s) ds

≤ 24B1(1 + l + l2 + l3 + l4 + l5)(1 + t+ t2)

t∫
0

g(s) ds ≤ A1B1, t ≥ 0, x ∈ [0, l],

and

|S2jxxxx(y)| =
∣∣∣∣24

t∫
0

x∫
0

(t− s)2g(s)S1j(y)(s, τ) dτ ds

∣∣∣∣
≤ 24

t∫
0

x∫
0

(t− s)2g(s)|S1j(y)(s, τ)| dτ ds ≤ 24B1lt
2

t∫
0

g(s) ds

≤ 24B1(1 + l + l2 + l3 + l4 + l5)(1 + t+ t2)

t∫
0

g(s) ds ≤ A1B1, t ≥ 0, x ∈ [0, l].

Thus ∥S2y∥ ≤ AB1, which completes the proof of Lemma 3.2.

Lemma 3.3. Assume that (H1) and (H2) hold. If y ∈ X satisfy

S2(y) = D, t ≥ 0, x ∈ [0, l], (3.2)

for some constant D, then y is a solution to (1.1)–(1.3).

Proof. Differentiating (3.2) three times with respect to t and five times with respect to x we find

g(t)S1(y) = 0, t ≥ 0, x ∈ [0, l],

whereupon
S1(y) = 0, t > 0, x ∈ [0, l].
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Since S1y( · , · ) ∈ C([0,∞)× [0, l]), we get

0 = lim
t→0

S1(y) = S1(y)(0, x), x ∈ [0, l].

Thus
S1(y) = 0, t ≥ 0, x ∈ [0, l].

Hence we conclude that y is a solution to (1.1)–(1.3). The proof of Lemma 3.3 is now completed.

Our main result in this section is as follows.

Theorem 3.1. Let (H1) and (H2) hold. Then problem (1.1)–(1.3) has at least one solution in X .

Proof. Denote by Ỹ, the set of all equicontinuous families in X related to ∥ · ∥. Put Y = Ỹ and

K =
{
y ∈ Y : ∥y∥ < B

}
.

For y ∈ K and ϵ > 0, define the operators

T (y) = ϵy,

S(y) = y − ϵy − ϵS2(y), t ≥ 0, x ∈ [0, l].

For y ∈ K, we have

∥(I − S)(y)∥ = ∥ϵy + ϵS2(y)∥ ≤ ϵ∥y∥+ ϵ∥S2(y)∥ ≤ ϵB1 + ϵA1B1.

Then S : K → X is continuous and (I − S)(K) is located in a compact subset of Y. Now, suppose
that there is y ∈ ∂K so that

y = β(I − S)(y),

or
y = βϵ(y + S2(y))

for β ∈ (0, 1
ϵ ). Then, using S2(y)(x, t = 0) = 0, we get

y(x, t = 0) = βϵ(y(x, t = 0) + S2(y)(x, t = 0)) = βϵy(x, t = 0), x ∈ [0, l],

whereupon βϵ = 1, which is a contradiction. Consequently,{
y ∈ K : y = β1(I − S)(y), y ∈ ∂K} = ∅

for any β1 ∈ (0, 1
ϵ ). Then it follows from Theorem 2.1 that the operator T + S has a fixed point

y∗ ∈ Y . Then

y∗ = T (y∗) + S(y∗) = ϵy∗ + y∗ − ϵy∗ − ϵS2(y
∗), t ≥ 0, x ∈ [0, l],

whence
S2(y

∗) = 0, t ≥ 0, x ∈ [0, l].

Then y∗ is a solution to (1.1)–(1.3) by Lemma 3.3. The proof of Theorem 3.1 is now completed.

4 The existence of non-negative solutions
Let B and A be the same constants that appear in conditions (H1) and (H2) such that

(H3) A1B1 < L
5 , and L > 0 satisfy

r < L < R1 ≤ B,

where r,R1 > 0.
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Theorem 4.1. Assume that (H1)–(H3) hold. Then problem (1.1)–(1.3) has at least two nonnegative
solutions in X .

Proof. Let
P̃ =

{
y ∈ X : y ≥ 0 on t ≥ 0, x ∈ [0, L]

}
.

Here, the set P denotes the set of all equicontinuous families in P̃ . For y ∈ X , define the operators

T1(y) = (1 +m1ϵ)y − ϵ
L

10
,

S3(y) = −ϵS2(y)−m1ϵy − ϵ
L

10
, t ≥ 0, x ∈ [0, L],

where ϵ > 0 and m1 > 0 is large enough. The operator S2 is given by (3.1). Any fixed point y ∈ X of
T1 + S3 is a solution to (1.1)–(1.3). Let

𝟋 = P,

K1 = Pr =
{
y ∈ P : ∥y∥ < r

}
,

K2 = PL =
{
y ∈ P : ∥y∥ < L

}
,

K3 = PR1
=

{
y ∈ P : ∥y∥ < R1

}
.

1. For y1, y2 ∈ 𝟋, we have ∥∥T1(y1)− T1(y2)
∥∥ = (1 +m1ϵ)∥y1 − y2∥,

where T1 : 𝟋 → X is an expansive operator with

h = 1 +m1ϵ > 1.

2. For y ∈ PR1
, we have

∥S3(y)∥ ≤ ϵ∥S2(y)∥+m1ϵ∥y∥+ ϵ
L

10
≤ ϵ

(
A1B1 +m1R1 +

L

10

)
.

Then S3(PR1
) is uniformly bounded. As S3 : PR1

→ X , is continuous, we find that S3(PR1
) is

equicontinuous. Then S3 : PR1
→ X is completely continuous.

3. Let y1 ∈ PR1
. Set

y2 = y1 +
1

m1
S2(y1) +

L

5m1
.

Note that S2(y1) +
L
5 ≥ 0 on [0,∞) × [0, l]. We have y2 ≥ 0 on t ≥ 0, x ∈ [0, l]. Therefore,

y2 ∈ 𝟋 and
−ϵm1y2 = −ϵm1y1 − ϵS2(y1)− ϵ

L

10
− ϵ

L

10
,

or
(I − T1)(y2) = −ϵm1y2 + ϵ

L

10
= S3(y1).

Then S3(PR1
) ⊂ (I − T1)(𝟋).

4. Assume that ∀ v0 ∈ P∗, there exist β ≥ 0 and

y ∈ ∂Pr ∩ (𝟋+ βv0),

or
y ∈ ∂PR1 ∩ (𝟋+ βv0),

such that
S3(y) = (I − T1)(y − βv0).
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Then
−ϵS2(y)−m1ϵy − ϵ

L

10
= −m1ϵ(y − βv0) + ϵ

L

10
,

or
−S2(y) = βm1v0 +

L

5
.

Hence
∥S2(y)∥ =

∥∥∥βm1v0 +
L

5

∥∥∥ ≥ L

5
,

which is a contradiction.

5. Set ϵ1 = 2
5m1

. Suppose that there exist y1 ∈ ∂PL and β1 ≥ 1 + ϵ1 such that

S3(y1) = (I − T1)(β1y1).

Moreover,
−ϵS2(y1)−m1ϵy1 − ϵ

L

10
= −β1m1ϵy1 + ϵ

L

10
,

or
S2(y1) +

L

5
= (β1 − 1)m1y1.

From here,
2
L

5
>

∥∥∥S2(y1) +
L

5

∥∥∥ = (β1 − 1)m1∥y1∥ = (β1 − 1)m1L

and
2

5m1
+ 1 > β1,

which is a contradiction.

Then system (1.1)–(1.3) has at least two solutions y1 and y2 such that

∥y1∥ = L < ∥y2∥ < R1,

or
r < ∥y1∥ < L < ∥y2∥ < R1.

The proof of Theorem 4.1 is now completed.

5 Example
Let

ρ = m = A = EI = 1, B = 1,

y0(x) = y1(x) = z0(x) = z1(x) = 1, x ∈ [0, 1], ζ(t) =
1

4(1 + t)2
, t ≥ 0,

and

f1 =
1

1 + t2 + x2
, f2 =

2

1 + 3t2 + 4x2
,

d =
1

1 + t2 + x2
, t ≥ 0, x ∈ [0, l],

and
R1 =

9

10
, L =

3

5
, r =

2

5
, m1 = 1050 , A1 =

1

10B1
.

Then
B1 = 7.
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Next,
r < L < R1 < B, A1B1 <

L

5
.

i.e., (H3) holds. Take

h(s) = log 1 + s22 + s11
√
2

1 + s22 − s11
√
2
, l(s) = arctan s11

√
2

1− s22
, s ∈ R, s ̸= ±1.

Then

h′(s) =
(1− s22)22

√
2s10

(1 + s22 − s11
√
2)(1 + s22 + s11

√
2)

, l′(s) =
11
√
2s10(1 + s22)

1 + s44
, s ∈ R, s ̸= ±1,

and

−∞ < 120 lim
s→±∞

(1 + s+ s2)h(s) < ∞,

−∞ < 120 lim
s→±∞

(1 + s+ s2)l(s) < ∞.

Thus there exists D1 > 0 such that

120(1 + s+ s2)
( 1

44
√
2

log 1 + s11
√
2 + s22

1− s11
√
2 + s22

+
1

22
√
2

arctan s11
√
2

1− s22

)
≤ D1, s ∈ R.

Since
lim

s→±1
l(s) =

π

2
,

and by [14, pp. 707, Integral 79], we obtain∫
dτ

1 + τ4
=

1

4
√
2

log 1 + τ
√
2 + τ2

1− τ
√
2 + τ2

+
1

2
√
2

arctan τ
√
2

1− τ2
.

Let
Q(s) =

s10

(1 + s+ s2)2(1 + s44)
, s ∈ R,

and
g1(t) = Q(t), t ≥ 0.

Then there exists D1 > 0 such that

120(1 + t+ t2)

t∫
0

g1(τ) dz dτ ≤ D1, t ≥ 0, x ∈ [0, l].

Let
g(t) =

A

D1
g1(t), t ≥ 0, x ∈ [0, l].

Then

120(1 + t+ t2)

t∫
0

g(τ) dz dτ ≤ A, t ≥ 0, x ∈ [0, 1],

i.e., (H3) holds. Next,

t∫
0

ζ(t− s) ds =
1

4

t∫
0

1

(1 + t− s)2
ds =

1

4

(
1− 1

1 + t

)
≤ 1.
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Therefore, the problem

ytt + yxxxx − 1

4

t∫
0

1

(1 + t− s)2
yxxxx(s, x) ds =

1

1 + t2 + x2
, x ∈

[
0,

1

2

]
, t ≥ 0,

ztt + zxxxx − 1

4

t∫
0

1

(1 + t− s)2
zxxxx(s, x) ds =

2

1 + 3t2 + 4x2
, x ∈

[1
2
, 1
]
, t ≥ 0,

subject to the boundary conditions

yx

(
x =

1

2
, t
)
= zx

(
x =

1

2
, t
)
= 0,

yxx(x = 0, t) = zxx(x = 1, t) = 0,

yxxx(x = 0, t) = zxxx(x = 1, t) = 0,

y
(
x =

1

2
, t
)
= z

(
x =

1

2
, t
)
= w

(
x =

1

2
, t
)
,

wtt

(
x =

1

2
, t
)
= η(t) + yxxx

(
x =

1

2
, t
)
− 1

4

t∫
0

1

(1 + t− s)2
yxxx

(
x =

1

2
, s
)
ds

−zxxx

(
x =

1

2
, t
)
+

1

4

t∫
0

1

(1 + t− s)2
zxxx

(
x =

1

2
, s
)
ds+

1

1 + t2 + x2
, t ≥ 0,

and the initial conditions

y(x, t = 0) = 1, yt(x, t = 0) = 1, x ∈
[
0,

1

2

]
,

z(x, t = 0) = 1, zt(x, t = 0) = 1, x ∈
[1
2
, 1
]
,

satisfies all requirements of Theorem 3.1 and Theorem 4.1.

Conclusion
An analytical approach to construct a mathematical model of viscoelastic flexible satellite system based
on Hamilton’s principle is considered. Solving the viscoelastic Euler–Bernoulli equation by a various
methods, made it possible to obtain a mathematical model of a damping flexible satellite system. New
scenarios for the existence of classical solutions for the viscoelastic flexible satellite system have been
identified with a few assumptions on the relaxation function ξ. Taking into account the influence of
center body control when constructing a mathematical model of the system significantly affects the
existence of at least two solutions under the influence of the dynamic boundary conditions. It was
revealed that the classical solutions always exist. Our results need a large class of sources functions
f1, f2.
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